

"CLEANER PRODUCTION TOWARDS A SUSTAINABLE TRANSITION"

Análise de Métodos de Reaproveitamento de Cavaco Metálico Contaminado Considerando Abordagens de Ecoeficiência e Ecoefetividade

MORAES, C. A. M. a,b*, SIMON, L. a,b, VARGAS, M. a,b

a. Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo

b. PPG - Engenharia Civil - Núcleo de Caracterização de Materiais - NucMat

*Carlos Alberto Mendes Moraes, cmoraes@unisinos.br

Resumo

A legislação brasileira em vigor prevê que a destinação correta dos resíduos sólidos industriais é obrigatoriedade do gerador. Porém, devido ao desconhecimento ou ausência de profissionais da área ambiental nas empresas, esta temática se torna uma das principais dificuldades encontradas, tendo em vista que o processo produtivo gera, na maior parte das vezes, resíduos e impactos ambientais, os quais não recebem a devida atenção. Entretanto, se analisado sob nova ótica, estes resíduos podem ser aproveitados como uma fonte alternativa para aumentar a ecoeficiência e como um objeto maior a ecoefetividade, reduzindo os impactos, aumentando a eficiência econômica e ambiental e contribuindo para a sustentabilidade. O setor metal-mecânico igualmente enfrenta a problemática do gerenciamento ambiental, precisando adaptar com urgência ao processo produtivo, tecnologias inovadoras que ajam com o intuito de alcançar a sustentabilidade. Sendo assim, o objetivo deste trabalho é avaliar a ecoeficiência e ecoefetividade dos métodos empregados na limpeza de cavacos metálicos contaminados com fluido de corte de empresas metalúrgicas. Desta forma, foi feito um estudo sobre a reutilização do cavaco de alumínio, analisando os métodos de limpeza utilizados, a eficiência do método, a destinação caso não possível reutilizar e avaliado dentro das características citadas, qual o mais ecoeficiente e/ou ecoefetivo. Esta avaliação foi realizada por critérios identificados na literatura, ao qual é possível avaliar métodos como ecoeficientes e ecoefetivos. Na prática foram encontrados somente métodos ecoeficientes e, entre estes, alguns com práticas ecoefetivas. Os resultados evidenciam que a cultura de reparar, reutilizar, reciclar e destinar, ao invés de promover ações como a remodelagem de um sistema produtivo em ciclo fechado onde não há geração de resíduos é ainda mais prático e realístico atualmente. Porém, é evidente que os princípios ecoeficientes e ecoefetivos melhoram o desempenho ambiental das empresas, diminuindo gastos com despesas para insumos, matéria-prima e destinação dos resíduos, além de contribuir para atingir maiores níveis de sustentabilidade.

Palavras-chave: Ecoefetividade; Ecoeficiência; Metalurgia; Cavacos Metálicos;

1. Introdução

O setor metal-mecânico apresenta expressiva importância no cenário econômico brasileiro, com vasta cadeia produtiva de segmentos ligados à metalurgia, usinagem e produção de manufaturados metálicos, sendo base para atividades relevantes, como indústria automobilística, construção civil e bens de capital. O uso do aço se diversifica a cada dia na sociedade moderna, deixando de ser apenas um insumo para se tornar a parte principal de grandes projetos.

Com o avanço da produção do aço, alumínio, cobre, entre outros metais e ligas, o processo produtivo sofreu uma série de mudanças tecnológicas, com intenso impacto econômico, social e ambiental. As atividades do setor metalúrgico estão fortemente associadas ao progresso desenfreado, não levando em consideração a sustentabilidade ambiental, degradando recursos e gerando resíduos, causando assim impactos ambientais.

A geração de resíduos tem se tornado um desafio para a gestão de empresas, pois além de perder insumo e matéria orgânica na "geração" do resíduo, o descarte ambientalmente correto se torna uma problemática devido aos altos custos e aos impactos ambientais associados.

As práticas comuns encontradas no setor metal-mecânico referem-se principalmente à remediação e tratamento depois do resíduo ser gerado (ecoeficiência), ao invés de desenvolver técnicas para melhoria do processo produtivo no intuito de evitar a geração de resíduos, otimizando processos e melhorando o aproveitamento de matéria prima e energia (ecoefetividade).

A ecoeficiência, conceito utilizado pelo World Business Council for Sustainable Development (WBCSD) é associada ao impacto dos negócios no ambiente, ao qual se reduz os impactos ambientais e aumenta o uso dos recursos naturais. Porém, diferentemente da ecoefetividade, não envolve alterações no processo produtivo no intuito de garantir maior durabilidade e contribuir para que haja um sistema fechado de reciclagem, no qual o produto final retorna ao seu estado inicial, ou quando descartado, se degrada ou não contamina o meio ambiente.

Num contexto maior de mudança de conceito em relação ao sistema industrial atual, que utiliza produtos tóxicos em sua cadeia produtiva, sem a preocupação de utilizar materiais ecologicamente corretos e processos que permitam a reutilização do resíduo, ao invés do descarte; este artigo tem a finalidade de analisar os métodos de reaproveitamento de cavaco de alumínio, proveniente do processo de usinagem mecânica e considerado, de acordo com a legislação vigente, resíduo perigoso para descarte por estar contaminado com fluido de corte, como ecoeficientes ou ecoefetivos.

2. Revisão Bibliográfica

2.1 A sustentabilidade e a competitividade empresarial

A sustentabilidade ambiental pode ser entendida como a manutenção da capacidade de sustentação dos ecossistemas, o que implica na capacidade de absorção e recomposição destes em face das interferências antrópicas.

O papel das empresas como agentes sociais no processo de desenvolvimento sustentável é imprescindível, sendo que em determinados segmentos industriais, principalmente no setor metalúrgico, é necessário ir mais além, adotando estratégias inovadoras, nas quais a integração entre as estratégias ambientais e de negócio são fundamentais, sob pena de ficarem ultrapassadas em relação aos seus concorrentes (CARDOSO, 2004). Desta forma, as empresas se apropriam do uso de ferramentas de implementação da gestão ambiental, para alcançarem vantagens competitivas demandadas pelo mercado.

2.2 Ecoeficiência e ecoefetividade

A ecoeficiência para Carvalho e Gomes (2008) apresenta-se como um significativo avanço na área ambiental, contribuindo para uma sociedade sustentável. A ecoeficiência auxilia as empresas no crescimento qualitativo principalmente, promovendo mais serviço, benefício e valor, em lugar de transformar mais materiais em energia e desperdício. A adoção de princípios ecoeficientes melhora, ainda, a qualidade de vida das pessoas ao reduzir a poluição ambiental e gerar produtos de qualidade superior.

Sistema ecoeficiente é aquele caracterizado pela capacidade de produzir mais e melhor, utilizando menos recursos e diminuindo a geração de resíduos. Stephan Schmidheiny (2014), fundador do WBCSD (2014), definiu ecoeficiência como o melhor termo para exprimir eficiência econômica e

ambiental. Ecoeficiência vem sendo disseminada como um instrumento de mensuração e avaliação de desempenho empresarial e que desperta maior atenção por parte dos governos e sociedades.

A ecoeficiência visa, portanto, a produção sustentável de bens e serviços para a sociedade, agregada de valor, não pela ampliação do consumo de recursos naturais, mas sim, pela sua redução e, minimização ou eliminação da geração de qualquer tipo de poluição e tem sido bem aceito por grande parte dos empresários.

A definição de ecoeficiência como uma filosofia de gestão que habilita a busca por melhorias no desempenho ambiental e, em paralelo, na rentabilidade dos negócios, é composta por três grandes objetivos: (a) redução do consumo de recursos; (b) redução do impacto na natureza e, (c) aumento do valor do produto ou serviço (WBCSC, 2014).

Confome Lutkemeyer (2014), a obtenção de tais objetivos é suportada pela entrega de produtos que satisfaçam as necessidades humanas e melhorem a qualidade de vida, ao mesmo tempo em que demanda de recursos naturais é balanceada de acordo com a capacidade regenerativa do planeta.

(Os sete elementos da ecoeficiência para Almeida (2002) são: a) redução do consumo de materiais com bens e serviços; b) redução do consumo de energia com bens e serviços; c) redução da emissão de substâncias tóxicas; d) intensificação da reciclagem de materiais; e) maximização do uso sustentável de recursos renováveis; f) prolongamento da durabilidade dos produtos; g) agregação de valor aos bens e serviços. Sendo que, a redução, um dos elementos centrais da ecoeficiência, não altera o fluxo linear do consumo de recursos e ignora os efeitos de longo prazo sobre os ecossistemas naturais (BRAUNGART e MCDONOUGH, 2007, 2009). O conceito de redução demonstra ser apropriado para sistemas produtivos tornarem-se "menos destrutivo", pois permitem desacelerar o esgotamento dos recursos naturais.

Apesar de bem intencionada, a ecoeficiência não propõe, em longo prazo, mudanças profundas o suficiente na produção industrial (BRAUNGART e MCDONOUGH 2007). De acordo com Silva e Figueiredo (2010), o objetivo das abordagens ecoefetivas é de manter os fluxos de materiais em ciclos fechados, estimulando o design em harmonia com os sistemas naturais, fluindo em ciclos fechados possibilitando o fluxo de materiais do berço ao berço (LUTKEMEYER, 2014). Esta abordagem parte do princípio de que a indústria seja regenerativa e não destrutiva, e que, a partir de uma lógica de desenvolvimento de produtos sustentáveis, sistemas de produção operem por meio de ciclos fechados de materiais.

A ecoefetividade propões ao sistema industrial, através de analogias biológicas, estratégias que visam otimizar o ciclo de materiais, da matéria virgem ao produto final, eliminando a disposição de resíduos. Braungart e McDonough (2009) propõem cinco passos para que se possa alcançar a ecoefetividade: a) ausência de produtos tóxicos conhecidos; b) escolha de matérias-primas menos agressivas ao meio ambiente e ao ser humano; c) inovação na escolha de matérias-primas com menor impacto social e ambiental, d) atendendo a função inicial; e) busca por ser bom e não pelo menos ruim, e reinventar para garantir efeitos reais e positivos para o meio ambiente.

Assim, de acordo com Lutkemeyer (2014), a Tabela 1 traça elementos que atribuem características para as abordagens ecoefetivas e ecoeficientes.

Tabela 1 - Características entre ecoeficiência e ecoefetividade. Fonte: Adaptado de Lutkemeyer (2014)

	ECOEFICIENTE	ECOEFETIVO	
ORIENTAÇÃO	Tende a promover ações com resultados de curto prazo	Tende a promover ações com resultados de longo prazo	
PARADIGMA	Redução e minimização (berço ao túmulo)	Resíduo = nutriente (berço ao berço)	
PRESSUPOSTOS	Fluxo linear de materiais	Fluxo cíclico de materiais	
INOVAÇÃO	Tende a ser incremental	Tende a ser radical	
VISÃO DE NEGÓCIOS	Aumenta a longevidade do uso dos produtos (reparo, reuso, remanufatura, reciclagem	Venda de atributos de desempenho e utilidade ao invés da simples venda do produto; novos modelos de negócio	

2.3 Resíduos da metalurgia e métodos de reaproveitamento

As práticas comuns encontradas no setor metal-mecânico referem-se principalmente a remediação e tratamento depois do resíduo ser gerado (ecoeficiência), ao invés de desenvolver técnicas para melhoria do processo produtivo no intuito de evitar a geração de resíduos, otimizando processos e melhorando o aproveitamento de matéria prima e energia (ecoefetividade).

No Brasil não existe um levantamento da quantidade de cavaco de alumínio e fluidos de corte utilizados pelas indústrias, não existindo assim, controle legal das quantidades utilizadas, da disposição final, do transporte e dos planos de emergência em casos de acidentes e/ou derrame do produto (KLOCKE e SCHINEIDER apud QUEIROZ, 1998).

Grande parte das indústrias (principalmente as de pequeno porte), não se responsabilizam pela disposição ambientalmente correta dos cavacos e dos fluidos de corte, vendendo parte destes resíduos para recuperadores e recicladores. Porém, nem todos compradores estão preparados para o correto manuseio destes resíduos, em decorrência disto, disposição em locais inadequados pode ocorrer, tende a ocorrer, tendo como consequência uma enorme agressão ao ambiente (DANDOLINE, 2001).

Dentre os principais impactos destacados sobre a disposição dos cavacos metálicos contaminados com fluido de corte estão: alteração da qualidade do ar, uso de recurso natural não renovável, risco de contaminação da água e do solo, efeito estufa e ocupação em aterro. Para evitar estes impactos, a solução ideal é a criação de métodos de reaproveitamento enquadrados em práticas ecoefetivas.

2.4 Método de reaproveitamento com abordagem ecoefetiva

Uma nova metodologia para limpeza de cavacos metálicos contaminados com fluido de corte sem geração de gases tóxicos, onde os princípios do programa de produção mais limpa foram base para minimizar a geração de resíduos e ainda gerar ganhos econômicos no processo desenvolvido, representando economia de quatro vezes em relação à compra da matéria prima em placas, foi desenvolvido por Dutra et al. (2009).

O método consiste em lavar com um reagente químico o resíduo de cavaco metálico. Após a lavagem, o cavaco é separado do efluente através de filtração. O cavaco limpo é encaminhado para um processo de secagem em estufa, cuja importância é evitar que os cavacos sofram oxidação devido a umidade, diminuindo a eficiência de recuperação do alumínio. Posteriormente a secagem, é feito a compactação para aumentar a área superficial, facilitando a fusão e reduzindo o volume e aumentando a eficiência de fusão.

A total remoção do óleo do resíduo, o alto grau de limpeza do reagente pelo processo de destilação e a usinabilidade do alumínio refundido (sem geração de fuligem e escória) muito próximo das ligas comerciais comumente utilizadas compõem os resultados obtidos neste processo. (DUTRA et. al, 2007)

3. Materiais e Métodos

A aplicação do trabalho foi realizada em três etapas distintas:

- i. em estudos anteriores foi feito a análise de métodos de reaproveitamento de resíduos de cavaco metálicos e escolhido o método considerado mais ecoefetivo para ser utilizado como o método controle. Para este trabalho, a metodologia escolhida e aplicada foi o protótipo descrito acima, projetado e executado por Dutra et al [9];
- ii. diagnóstico do reaproveitamento in loco de resíduos de cavaco de alumínio em três empresas situadas em Porto Alegre RS, do ramo metal-mecânico que possuem o mesmo tipo de resíduo para comparação dos métodos empregados. Os dados coletados apresentados foram obtidos através de abordagem qualitativa ao Sistema de Gerenciamento Ambiental das empresas estudadas, cujas denominações sociais declinam-se a revelar devido às políticas de segurança e privacidade adotadas pelas empresas. Para este trabalho, as empresas foram denominadas de Empresa A, Empresa B e Empresa C. Cabe ressaltar que a não revelação dos nomes não comprometeu a segurança dos dados ou o desenvolvimento e veracidade deste trabalho;
- iii. análise das diferentes práticas apresentadas pelas empresas "A", "B" e "C" para o reaproveitamento do resíduo de cavaco metálico, identificando as abordagens ecoefetivas e ecoeficientes em cada método e posteriormente avaliação e comparação dos métodos em relação ao método controle.

4. Resultados

A partir das informações obtidas na revisão bibliográfica sobre os métodos de reaproveitamento, foi realizada a identificação das abordagens como ecoeficientes e/ou ecoefetivas. O processo adotado como controle, de Dutra et. al (2009), enquadra-se na abordagem ecoefetiva, uma vez que tende a promover ações com resultados de longo prazo e considera o resíduo como nutriente, conforme proposto por Braungart e McDonough (2009). Outro aspecto considerado pelos autores e identificado no processo controle é o fluxo cíclico de materiais, ao qual o metal limpo pode livremente voltar ao processo produtivo com características de matéria prima, identificando-se como inovação radical.

Os resultados obtidos pelas empresas podem ser melhores visualizados na tabela 2.

Tabela 2 – Coleta de dados nas empresas entrevistadas. Fonte: Os autores (2015)

EMPRESA	GERAÇÃO (T/MÊS)	DESTINAÇÃO	TRATAMENTO PELA EMPRESA GERADORA	IMPACTO AMBIENTAL
Empresa A	55	Venda do resíduo para metalúrgica que fará a refusão do cavaco	Não há	Significativo
Empresa B	19	Venda do resíduo para empresa terceirizada a fim de juntar mais quantidade e vender para metalúrgica que fará refusão do cavaco	Escoamento do óleo em caçamba a fim de vender o resíduo metálico mais limpo	Significativo
Empresa C	2	Pagam para empresa terceirizada recolher o resíduo, fazer o tratamento necessário e dispor em aterro industrial	Não há	Significativo

No caso da empresa A, que vende seus resíduos contaminados na forma de como são gerados para serem refundidos em metalúrgica (fundição), foi identificada a abordagem de ecoeficiente, uma vez

que sua orientação promove ações com resultado de curto prazo. Para a empresa B, que adota a prática de escoamento parcial do óleo contaminante do resíduo metálico antes da sua venda, também foi caracterizada como abordagem ecoeficiente em relação à sua orientação de promover ações com resultados em curto prazo. Uma vez que a refusão dos resíduos contaminados gerados nas empresas A e B por uma metalúrgica tem caráter incremental sem inovação, aumenta a longevidade do uso do produto com a reciclagem e não há novo modelo de negócio. Sob o ponto de vista do resíduo, este pode ser considerado ecoefetivo, pois considera o resíduo como nutriente, uma vez que volta a ser matéria prima para outra empresa formando um fluxo cíclico de materiais. Este conceito vai ao encontro da ideia de ecoefetividade, já proposta anteriormente. Neste caso não está sendo considerada a qualidade do resíduo/matéria prima em questão.

Ao analisar o caso da empresa C, identificou-se que a abordagem da ecoeficiência se adapta pelo fato de adotar o paradigma do berço ao túmulo (fluxo linear), embora esteja reduzindo o impacto ambiental em relação às demais empresas, uma vez que não exista a possibilidade de derramamento de óleo lubrificante na natureza ao fazer o processo de escoamento, o resíduo vai para aterro industrial, sendo uma ação com resultado de curto prazo.

Cabe salientar que no caso da empresa B não foi possível obter informação sobre a destinação do óleo escorrido. Na figura 1 há um resumo dos processos analisados e suas respectivas caracterizações entre ecoefetividade e ecoeficiência, onde se faz relação com a tabela 1.

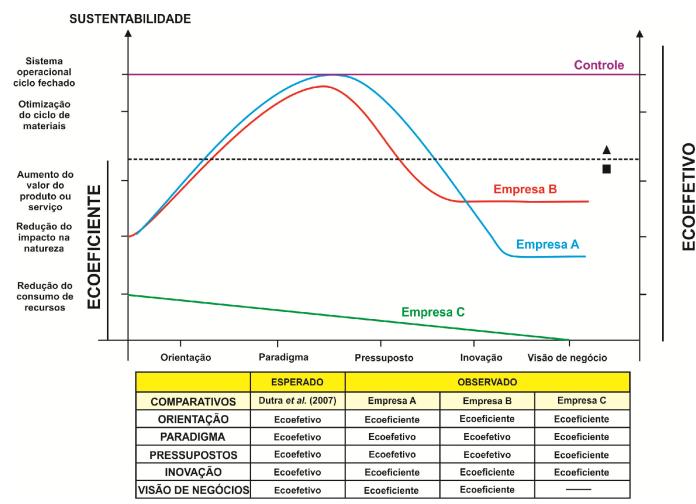


Fig. 1. Comparação do método controle com os métodos observados. Elaborado pelos autores (2015)

Sob o ponto de vista das abordagens ecoeficiente e ecoefetiva, os métodos de reaproveitamento adotados pelas empresas A e B, como pode ser observado na Fig. 1, são consideradas mais

sustentáveis do que os métodos de reaproveitamento da empresa C. Uma vez que, a destinação de resíduo de cavaco metálico contaminado com fluido de corte em aterro industrial como destinação final, mesmo pagando para que se seja realizado os procedimentos adequados e legalmente corretos para o descarte, não é considerado abordagem ecoefetiva. Em relação à visão de negócios proposta por Lutkemeyer (2014), o processo da empresa C não é identificado como ecoeficiente ou ecoefetivo, pois não visa o aumento da longevidade do uso dos produtos, visando a ecoeficiência, bem como não vende atributos de desempenho e utilidade e não propõe novo modelo de negócio que visa à ecoeficiência. Já a empresa B é considerada com visão de negócios mais desenvolvida que a empresa A, uma vez que ela agrega valor à segregação e reciclagem no momento em que faz o escoamento do fluido de corte e vende o cavaco com menos contaminante que a A.

Ainda analisando a Fig. 1 percebe-se que nenhuma empresa entrevistada apresenta comportamento similar ao processo controle, ainda que as empresas A e B possuam processo cíclico em relação à reutilização do cavaco gerando tendência à ecoefetividade. A linha tracejada representa a divisão entre abordagens ecoefetivas (triângulo) e ecoeficientes (retângulo).

5. Conclusão

O trabalho demonstra que práticas ecoefetivas nos processos industriais podem trazer resultados positivos para o desenvolvimento da sustentabilidade, além de melhorias ambientais (deixando de extrair matéria prima e evitando poluição), redução de custos (na destinação de resíduos) e aumento econômico (deixando de comprar e produzindo o próprio insumo), porém esta abordagem ainda não é implantada totalmente nas empresas visto que somente o processo controle possui todas as etapas do processo de reaproveitamento de cavaco metálico como ecoefetivas. Aponta também que a metodologia aplicada se mostrou eficaz, uma vez que foi possível identificar os métodos estudados abordagens ecoeficientes e ecoefetivas.

Embora o enfoque da ecoeficiência apresente boa intenção e resultado a curto prazo, percebe-se que pequenas mudanças, tais como mudança no consumo de matéria-prima e mudança na destinação dos resíduos não são suficientes para ter um cenário de sustentabilidade, sendo necessário que haja mudanças tecnológicas e culturais para alcançar a sustentabilidade. Percebe-se que as práticas e conceitos das abordagens da ecoefetividade devem ser mais abordados pela literatura e adotados empresas, uma vez que, em longo prazo, trazem benefícios ambientais e econômicos. Porém, ainda processos com práticas ecoeficientes são melhores se comparados com processos que não possuem alguma prática sustentável.

Referências

ALMEIDA, F. O bom negócio da sustentabilidade. Rio de Janeiro: Nova fronteira, 2002.

BRAUNGART, M., MCDONOUGH, W., BOLLINGER, A. "Cradle-to-cradle design: creating healthy emissions: a strategy for eco-effective product and system design". *Journal of Cleaner Production*, v. 15, n. 13-14, pp. 1337-1348, 2007.

BRAUNGART, M., MCDONOUGH, W. Remaking the way we make things: cradle to cradle. Vintage, Random House, 2009.

CARDOSO, Ligia Maria Franca. *Indicadores de produção limpa: Uma proposta para análise de relatórios ambientais de empresas*. 2004. 155p. (Dissertação de mestrado). Universidade Federal da Bahia – Salvador, 2004 – Bahia.

CARVALHO, F. P. A., GOMES, J. M. A., "Eco-eficiência na Produção de Cera de Carnaúba noMunicípio de Campo Maior", *Revista de Economia e Sociologia Rural*, v. 46, n. 2, pp. 421-453, abr/jun 2008.

COSTA, A. A. O., A eco-efetividade do design: Proposição de uma ferramenta de análises e sua aplicação em sistemas de produtos + serviços., Dissertação de mestrado, CAC, Design, Universidade Federal de Pernambuco, PE, Brasil, 2009.

DANDOLINE, Décio Luis. *Gerenciamento ambiental de fluidos de corte em industrias metal-mecânicas*. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia Ambiental/Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil, 2014.

DUTRA, Carlos Renê Antunes et al. "Reciclagem de cavaco de alumínio contaminado oriundo do processo de usinagem." III Congresso Internacional do Alumínio, São Paulo, v. 1, p.555-564, maio 2007.

LUTKEMEYER FILHO, M.G., Avaliação da aderência aos princípios de sustentabilidade em desenvolvimento de produto à luz de abordagens ecoeficientes e ecoefetivas: uma aplicação no setor automotivo, Dissertação de mestrado, Programa de Pós-Graduação em Engenharia de Produção e Sistemas/UNISINOS, São Leopoldo, RS, Brasil, 2014.

QUEIROZ, Jorge Luiz Lima. Caracterização da problemática ambiental decorrente da utilização dos fluidos de corte em processos de usinagem, Dissertação de mestrado, Programa de Pós Graduação em Engenharia de Produção e Sistemas/Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil, 1998

SILVA, A. F., DE FIGUEIREDO, C. F., "Reaproveitamento de resíduos de MDF da indústria moveleira", Revista Design & Tecnologia, UFRGS, n. 2, 2010.

WORLD BUSINESS COUNCIL FOR SUSTAINABLE DEVELOPMENT (WBCSD). 2000. Disponível em: http://oldwww.wbcsd.org/web/publications/measuring-eco-efficiency-portugese.pdf. Acesso em: 05 dez. 2014.