5th International Workshop - Advances in Cleaner Production São Paulo - Brazil - 20th to 22nd, May - 2015

"Estudo comparativo de métodos para síntese de sílica gel a partir das cinzas de resíduo de biomassa da cana-de-açúcar."

RODRIGO A. HELENO, Dra. THAÍS V. REIS, Dra. DENISE A. FUNGARO* dfungaro@ipen.br

Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN-USP

Centro de Química e Meio Ambiente (CQMA)

Academic Work

5th International Workshop - Advances in Cleaner Production

Academic Work

INTRODUÇÃO

Industrias sucroalcooleiras:

- Açúcar refinado
- Etanol
- → Bagaço da CDA → Cinzas do bagaço da CDA

3,8 milhões de toneladas/ano

Cana-de-açúcar 500 – 700 kg Si/ ha ao ano

Planta cultivada que mais absorve Si

(Matinchenkov e Calvert, 2002)

Cinzas – Ricas em Si

↑ Produção sucroalcooleira → ↑ Bagaço de CDA

- Valor agregado
- Baixo custo
- Inúmeras aplicações

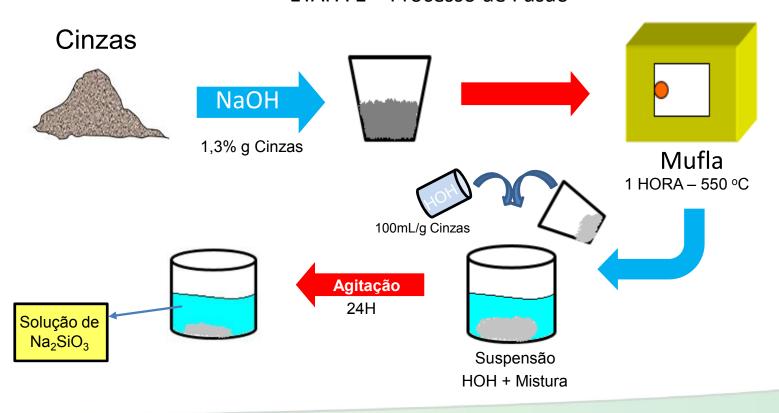
3 MÉTODOS DE SÍNTESE

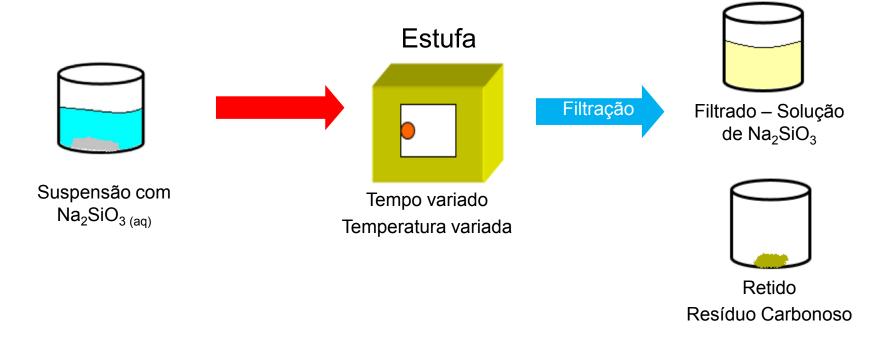
5th International Workshop - Advances in Cleaner Production

Academic Work

MATERIAIS E MÉTODOS

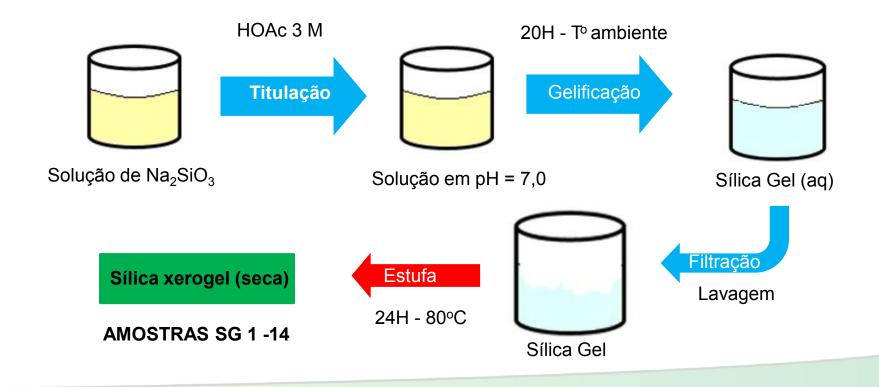
Cinzas - CDA: COSAN



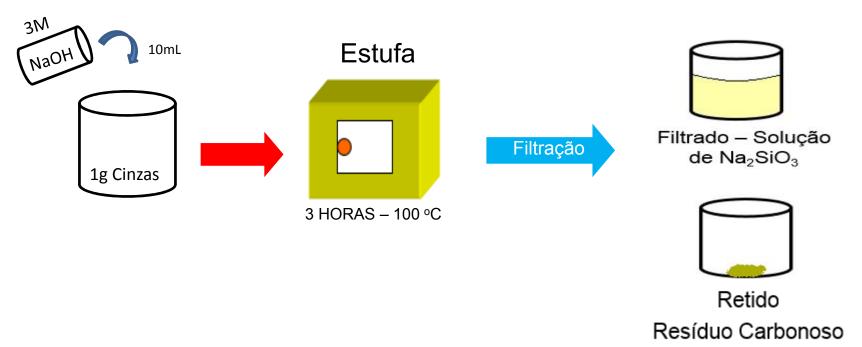

Cinzas do resíduo da biomassa da CDA

Sílica Gel seca (xerogel)

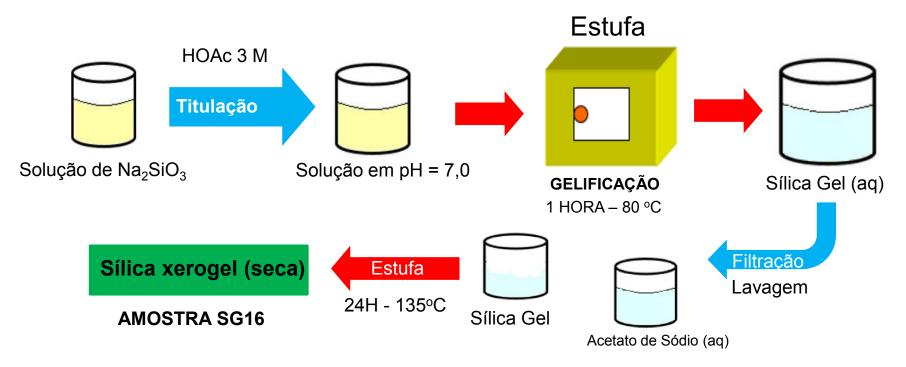
ETAPA 1 – Processo de Fusão



ETAPA 2 – Tratamento hidrotérmico



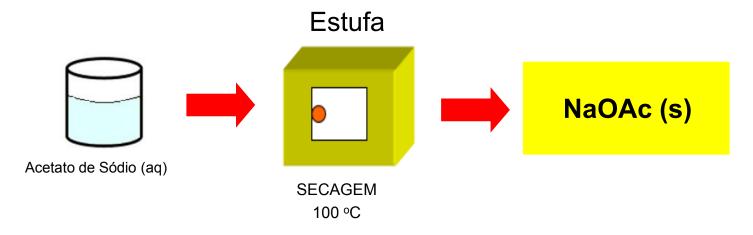
Obtenção da sílica gel



O processo de obtenção da sílica gel seguiu o mesmo procedimento do método de duas etapas. **AMOSTRA SG15**

MÉTODO III – PROCESSO DE GELIFICAÇÃO À 80°C

Obtenção da sílica gel – Ferret, 2013



MÉTODO III - PROCESSO DE GELIFICAÇÃO À 80°C

Obtenção de Acetato de Sódio

Submeteu-se a solução de NaOAc à estufa para obter-se o sal hidratado.

NaOAc como produto residual secundário

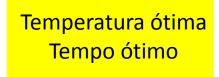
RESULTADOS E DISCUSSÕES

CINZAS DO RESÍDUO DA BIOMASSA DA CDA

Fluorescência de raio x

Composição Química das cinzas do bagaço de CDA

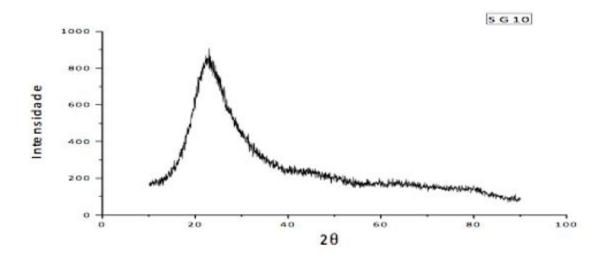
Quantidade de SiO₂



CINZAS DO RESÍDUO DA BIOMASSA DA CDA

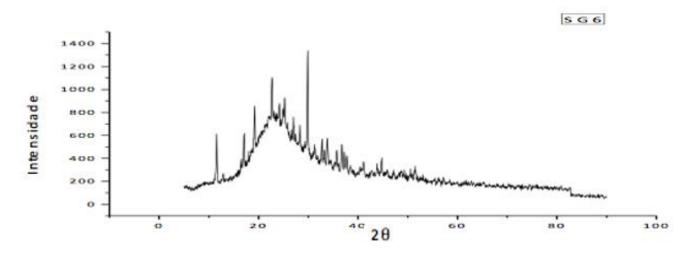
Óxidos	Teor	Óxidos	Teor	
	(% em massa)		(% em massa)	
SiO ₂	81,6	SO ₃	0,52	
Al ₂ O ₃	7,94	Cl	0,36	
Fe ₂ O ₃	2,31	Na ₂ O	0,26	
K ₂ O	2,10	MnO	0,06	
MgO	1,26	Ta ₂ O ₅	0,04	
P ₂ O ₅	1,07	NiO	0,03	
CaO	0,98	As ₂ O ₃	0,03	
TiO ₂	0,67	PF	0,79	

- Variou-se o tempo e a temperatura aos quais as amostras SG1 14 foram submetidas na estufa.
- Aferiu-se a temperatura e o tempo ótimos para a síntese de sílica gel
- A formação de sílica gel (amorfa) foi aferida mediante difratometria de raio x (DRX), intervalo de varredura 2θ.


Melhor rendimento

↑ SG (g)

AMORFA



Difratograma de raio x - amorfo

SG10 – Amostra em tempo e temperatura ótima. Maior rendimento em polimorfismo amorfo

Difratograma de raio x - cristalino

SG6 – Amostra de polimorfismo cristalino, provavelmente cristobalita (Le Blond et al, 2010)

	2ª ET	m _{sg} (g) -	
Amostra	Tempo na estufa (h)	Temperatura (°C)	Amorfa
SG1	1	100	n.f
SG2	2	100	0,232
SG3	3	100	0,248
SG4	6	100	0,366
SG5	20	100	0,431
SG6	24	100	n.f
SG7	2	90	0,388
SG8	3	90	0,402
SG9	6	90	0,53
SG10	20	90	0,689
SG11	2	95	n.f
SG12	3	95	n.f
SG13	6	95	n.f
SG14	20	95	n.f

RESULTADOS

Parâmetros 90°C – 20H

Melhores resultados

MÉTODO	RENDIMENTO	SÍLICA GEL (drx)	TEMPO (H)
METODO I 2 ETAPAS	89%	AMORFA	70
MÉTODO II 1 ETAPA	_	NÃO FORMADA	51
MÉTODO III GELIFICAÇÃO À 80°C	91%	AMORFA	52

RESULTADOS

NaOAc Reaproveitado do filtrado da SG(aq) 90%

Resíduo → Menos poluente que as cinzas

Carbonoso → Massa residual menor → ≈ 30%

5th International Workshop - Advances in Cleaner Production Academic Work

CONCLUSÃO

90°C/20h Parâmetro de síntese

MAIOR formação de SG com MELHOR tempo

Método III - Maior rendimento + melhor tempo

MELHOR MÉTODO DE SÍNTESE

SÍNTESE - MÉTODO III

- Reprodutível em larga escala
- Baixo custo operacional
- Diminui resíduos ambientais
 Resíduo Carbonoso
- Gera produtos de valor agregado
 - Sílica Gel (xerogel)
 - NaOAc

AGRADECIMENTOS

• À COSAN, pelo fornecimento da matéria-prima;

Ao IPEN, por fornecer o ambiente de trabalho;

Ao CNPq, pela bolsa referente ao projeto;

Às orientadoras e colaboradoras, pela ajuda.

5th International Workshop - Advances in Cleaner Production

Academic Work

OBRIGADO!

