5th International Workshop - Advances in Cleaner Production São Paulo - Brazil - 20th to 22nd, May - 2015

Linking Sanitation to Agriculture: Recycling Nutrients from Human Excreta in Food Production

Mariana C. Chrispim MSc (Public Health) – USP / Professor - UEMS
 Delhi P. Salinas Environmental Management Professor- USP
 Vitor Cano MSc (Public Health) - USP
 Marcelo A. Nolasco Environmental Management Professor- USP
 Academic Work

SANITATION ISSUES IN DEVELOPING COUNTRIES

- **Diarrhea:** main cause of infant (>4 billion of cases/year)
- **Brazil:** \cong 50% municipalities without sewage collection
- Existing sanitation solutions: many impacts to environment

Sanitation technologies should be adjusted local situation:

- Economic aspects
 - Cultural aspects
 - Social aspects

SUSTAINABLE SANITATION

- Alternatives to conventional wastewater treatment:
 - Excreta segregation
 - Reuse of its nutrients
- Examples around the world:
 - Treatment of feaces and urine to use in agriculture
 - Sweden, Germany, Mexico, China, Zimbabwe...

HUMAN URINE AS FERTILIZER

• Experiences:

- positive results for various species⁷
- urine contains: N, P and K⁸.

Household level:

- urine storage is not necessary (low risk)⁹
- Urinals:
 - faecal cross-contamination is excluded^{10.}

Source:http://www.wecf.eu/english/articles/2005/09/maize_urine.php. http://www.grida.no/publications/et/ep5/page/2823.aspx

RESEARCH OBJECTIVES

- <u>To evaluate</u>: human urine as fertilizer for corn and lettuce cultivation - effects on soil and plants;
- <u>To recommend</u>: appropriate dosages for better development of these species.

METHODOLOGY

Urine Collection:

- Waterless urinal (*Uridan*®)
- Male toilet of university

System with a sealant liquid (blocking fluid) which is biodegradable and constitutes an effective odour barrier.

Treatment/Speci	Corn	Lettuce			
es					
Α	200,000 L/ha of	12,000 L/ha of			
	neat urine, distributed in	neat urine distributed in 3			
	8 applications once a	applications (15, 30 and			
	week.*	45 days after seeding).			
В	10,800 L/ha of	1,500,000 L/ha of			
	neat urine, 35 days after	diluted urine, distributed			
l	seeding.	twice per week at a			
		dilution of 3:1 (water:			
		urine) during the first			
		month, a dilution of 5:1			
		during the second month,			
		and a dilution of 5:1 once			
		per week in the third			
		month.*			
с	No urine (control).	20,000 L/ha of			
		neat urine, one application			
		48 days after seeding.**			
D		No urine (control).			

Table 1: Urine application rate for the corn and lettuce crops.

* Based on Morgan. ** Based on Guadarramaet al.
 Baseadas nas recomendações brasileiras de adubação com nitrogênio ^{13,14}.

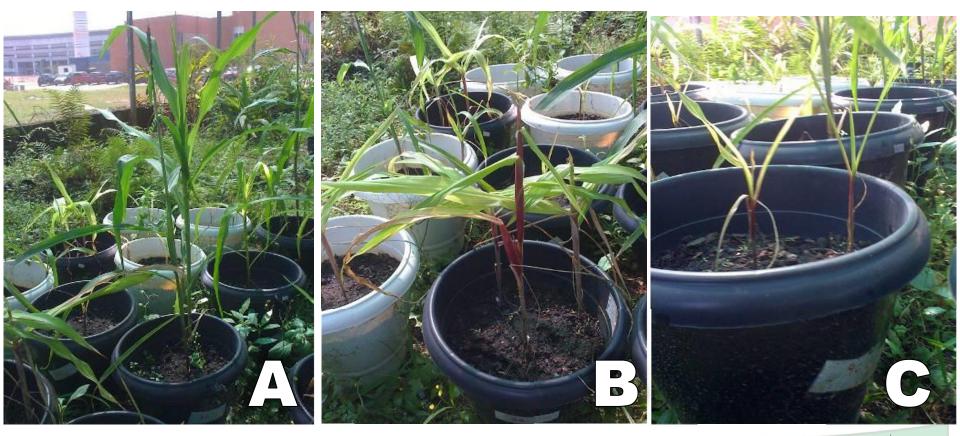
- 10 replicates (pots) per group.
- **Corn:** up to 3 plants / pot;
- Lettuce: up to 6 plants / pot.
- Substrate was commercial topsoil for planting.
- Growth Period:
 - 5 months to 17 days (corn)
 - 3 months and 8 days (lettuce).

METHODS

Small-scale experiment:
Flower pots (10 / 8 / 5 L)

Orine applied to soil in holes: 10 cm from each plant 10 cm depth¹⁵

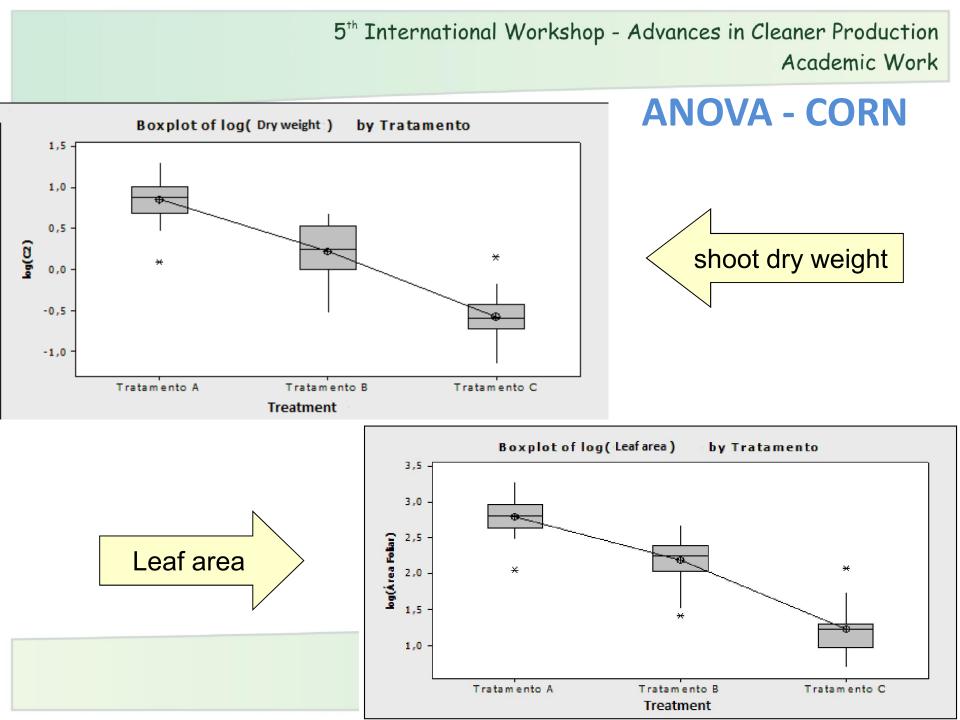
- Urine storage only for treatment B of corn.
- Plant biological parameters: data analyzed by ANOVA.
- <u>Physicochemical soil analysis</u>: before and after cultivation period.


RESULTS - CORN

- Significant difference between treatments (p-value < 0.05)
 - **Treatment A** (highest urine concentration) had better growth and development:
 - Higher number of leaves;
 - Height;
 - leaf area;
 - Shoot dry weight;
 - Root weight;
 - Number of ears

PLANTS GROUPS

None of the plants reached physiological maturity.



Reproductive stage

N defficiency

N and P defficiency

RESULTS

- Related to:
 - Higher nutrient uptake
 - Lower hydric deficit
 - Higher photosynthesis¹⁶

 Soil analysis: physicochemical characteristics did not vary significantly among the groups.

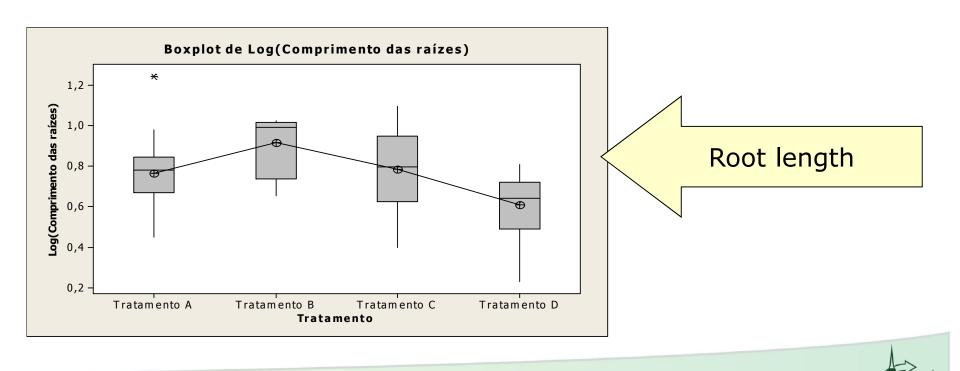
Highest dosage \rightarrow lowest pH / highest electrical conductivity

RESULTS - LETTUCE

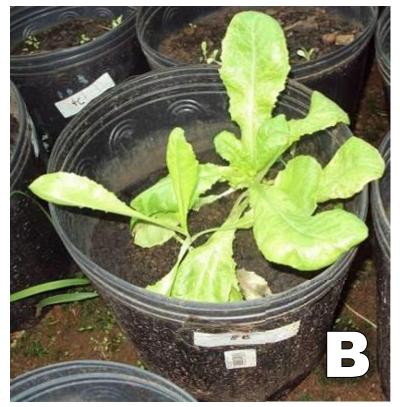
Attack of insects: mortality in all treatments (ten days)

Doru luteipes

Lepdoptera: Gracilariidae


Group B: highest mortality

Biological parameters:


- Treatment B showed best results.
- Control group showed the lowest values

RESULTS - LETTUCE

LETTUCE

Non-fertilized (tap water)

December 7th,2011

Nitrification Plant uptake

SOIL ANALYSIS

Group	pH	В	Cu	Fe	Mn	Zn	Р	S	к	Ca	Mg
Α	6.5	0.3	4.4	19.3	0.8	1.9	54.7	0	5.5	79.8	27.1
В	5.6	0.4	5.2	20.0	6 .7	2.3	67.6	0	6.5	61.4	22.1
С	6.7	0.3	3.9	21.4	1.7	1.9	53.6	0	4.9	77.2	23.4
D	6.8	0.3	3.1	19.9	1.1	1.6	49.3	0	3.9	69.3	20.9

Units: P(mg/dm³); K (mmol/dm³); Ca (mmolc/dm³); Mg (mmol/dm³); B, Cu, Fe, Mn, Zn (mg/dm³)

Sample	Total Nitrogen (g/Kg)	
А	2.32	
В	3.48	Nitrogen Conten
С	1.93	
D	1.54	

PAYBACK STUDY

Considering replacement of all flush urinals of *campus* with waterless urinals.

- <u>Simple Payback:</u> 9 months.
- <u>Discounted Payback</u>: 10 months.

ANNUALLY THE ECONOMY IN WATER BILLS WOULD BE ABOUT: U\$ 46,966.00 (USD)

FINAL REMARKS

• Both in corn and lettuce cultivation

Urine doses significantly better than the control: higher values in all of the biological parameters measured.

- **<u>CORN</u>**: dosages of groups A and B are recommended
- **LETTUCE:** dosages of group B and group C are recommended
- The high mortality in treatment B might be due to the following causes: soil salinity, low soil pH.

ACKNOWLEDGEMENTS

São Paulo Research Foundation
 – (FAPESP–Process 2010/18241-6).

Thank you!

- Mariana Cardoso Chrispim
- E-mail: mariana.chrispim@uems.br

REFERENCES

- 1.Programa das Nações Unidas para o Desenvolvimento no Brasil (PNUD. Relatório de Desenvolvimento Humano. 2011.
- 2.BRAZIL. Ministery of Social Development. Disponivél em: 2011.
- 3.Brazilian Institute of Geography and Statistics (IBGE) (2008). *Pesquisa Nacional de Saneamento Básico- 2008 (National Research of Basic Sanitation in 2008)*. Brazil.
- 4. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Censo demográfico 2010.
- 5.The University of São Paulo. Disponível em: http://www5.usp.br/en/ 2012.
- 6. World Health Organization (2011). *The top 10 causes of death.* Media Centre,WHO, Geneva, Switzerland.
- 7. Otterpohl, R., Malisie, A. F. & Prihandrijanti, M. (2007). The potential of nutrient reuse from a source-separated domestic wastewater system in Indonesia-case study: ecological sanitation pilot plant in Surabaya. *Water Science and Technology*, 56 (5), 141-148.
- 8. Gensh, R., Miso, A. & Itchon, G. (2011). Urine as Liquid Fertilizer in Agricultural Production in the Philippines. A pratical field guide. In: *Xavier University Press*, Cagayan de Oro City. http://www.suddenleaptechnologies.com/susan/PH-urine-guide-110502-lowres.pdf (accessed 10 March 2011).
- 9. WORLD HEALTH ORGANIZATION (WHO). Guidelines for the safe use of wastwater, excreta and greywater. Water Sanitation and Health. 2006.
- 10. SHAW, R. THE USE OF HUMAN URINE AS CROP FERTILIZER IN MALI, WEST AFRICA. 2010.
- 11. MORGAN, P. Toilets That Make Compost Low-cost, sanitary toilets that produce valuable compost for crops in an African context. Stockholm, Sweden: Stockholm Environment Institute Ecosanres Programme, 2007.

REFERENCES

- 12. GUADARRAMA, R. O.; PICHARDO, N. A. e OLIVER, E. M. Urine and compost efficiency applied to lettuce cultivation under greenhouse conditions intemixco, Morelos, México. Morelos: EcoSanRes Programme. 2002.
- 13. Coelho, A. M., França, G. E., Pitta, G. V. E., Alves, V. M. C. & Ernani, L. C. (2006). Fertilidade de solos -Nutrição e Adubação do Milho (Soil Fertility- Nutrition and Fertilization of corn), Brazilian Agricultural Research Agency. http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Milho/CultivodoMilho_2ed/feraduba.ht m (accessed 15 August 2010).
- 14. INSTITUTO AGRONÔMICO (IAC). Centro de Análise e Pesquisa Tecnológica do Agronegócio de Horticultura. **Alface. Boletim 200.** 2005. Disponível em:
- <http://www.iac.sp.gov.br/Tecnologias/Alface/Alface.htm> Acesso em: 20 de julho de 2010.
- 15. Gensh, R., Miso, A. & Itchon, G. (2011). Urine as Liquid Fertilizer in Agricultural
- Production in the Philippines. A pratical field guide. In: *Xavier University Press*, Cagayan de Oro City. http://www.suddenleaptechnologies.com/susan/PH-urine-guide-110502-lowres.pdf (accessed 10 March 2011).
- 16. Marriel I. E., Alves, V. M. C., Vasconcellos, C. B., França, G. E., Sachaffert, R. E., Santos, F. G. & Oliveira, A. C. (2000). Root morphology and nitrogen uptake efficiency on sorghum genotype influenced by the supply of nitrogen in hydroponic substrate, Brazilian Agricultural Research Agency, Minas Gerais, Brazil.
- 17. Severino, L. S., Cardoso, G. D., Vale, L. S. & Santos, J. W. (2004). *Método para determinação da área foliar da mamoneira (Method for determination of leaf area of the castor bean)*. *Brazilian Journal of Oil and fiber plants*, **8**(1), 753-762.
- 18. Medeiros, L. A. M., Manfron, P. A., Medeiros, S. L. P. & Bonnecarrere, R. A. G. (2001). Growth and development of lettuce (Lactuca sativa L.) in a plastic greenhouse with fertirrigation in substrates. Ciência Rural, **31**(2).