Recyclability in wind power area and the consequent economic and environmental impact

LIMAD, W. G. N.*, SILVA, M. L. P.

CENTRO PAULA SOUZA

Outline

- Introduction
 - Aim
 - Reasons
- Methodology
- Results & Discussion
- Conclusion

Remarks

Objective:

This work aims for a better understanding of material balance and specification regarding recyclability and usability of wind turbines that suffer corrective maintenance.

Introduction

- According to Atlas (2013), wind potential is approximately 143 GW
- Nowadays, only 3 % of this amount has been actually produced

Market needs:

During the 25 years long operation, it is expected that small or non-maintenance be required since the turbine works in a 24/7

5th International Workshop - Advances in Cleaner Production Academic Work

Methodology

case study

process steps needed by wind turbine recycling and repairing

> definition of critical steps and indicators for flow material analysis (ERP)

> > critical analysis

Results & Discussion

case study

process steps needed by wind turbine recycling

and repairing

definition of critical steps and indicators for flow material analysis (ERP) ___

critical analysis

Site description Academic Workshot Advances in Cleaner Production Academic Work

Consequence!

stator

rotor

Results

definition of critical steps and indicators for flow material analysis (ERP)

critical analysis

5th International Workshop - Advances in Cleaner Production

Process description Academic Work

Process Flow - Air Turbines Manufacturing and Control

Critical!

Process description

- Why critical?
 - According Paretos' (flow material analysis)
 - · large amount of material;
 - faults usually occur there.
- Steps #1 and # 5 20000 pieces of iron (~ 3 tons); usually destined as scrap.
- Step #2 high quality copper material in a 3D exquisite structure.
- Step #3 Expensive organic polymeric material with no easy way to separate from other parts, i.e. recycling is improbable.
- Step #4 Magnet highly expensive material. No feasible recycling process known, sold as scrap.
- Steps #6 #7; #8 and #9 rotor structure, i.e. ~ 10 ton of metallic material that could be recovered.

Academic Work

Process description

- As counterpoint:
 - Material that has high economic value is at same place where faults generally occur

Results

case study site process steps needed by wind turbine recycling and repairing definition of critical steps and indicators for flow material analysis (ERP) critical analysis

Flow analysis

Constraints

- Legal ✓
 - No incentive
- Technical
 - difficulty, due to the complexity of the process
- Economical/Orga nizational
 - major concerns
- Environmental
 - major concerns

Flow analysis

- -6 months
- human resources
 material analysis

- remanufacturing 20 days ~ assembling
 - Compromise: time expended x disassembling
 - -High amount of material
 - » partnership (industrial symbiosis)
 - » Small entreprises

Results

definition of critical steps and indicators for flow material analysis (ERP)

critical analysis

5th International Workshop - Advances in Cleaner Production

Academic Work

ERP and flow analysis

Top 10	Description of Materials	Value in R\$	Weight in tons
1	Permanent magnets	4308864,00	13
2	Rotor, structure	2482686,00	11
3	Coils	2324851,20	5
4	Principal axis	1155937,64	6
5	Stator winding core	1028048,00	22
6	Stator - casting	985724,32	17
7	Leaked Axis	827960,10	1,2
8	Stator, structure	764000,16	42
9	Bearing side wind	322998,72	1
10	Bearing side gondola	320023,22	0,8
11	Magnetic grooves (outer rings)	165957,12	0,8
12	Reinforced Head	131469,36	0,8
13	Grease	100851,52	0,6
14	Break calliper	85462,74	0,2
15	Fiber glass shield	78852,40	0,1
	Total	15083686,50	121,5

ERP and flow analysis

Results

definition of critical steps and indicators for flow material analysis (ERP)

critical analysis

ERP and flow analysis

Conclusions

- Achievements:
 - better understanding of mass balance on recycling of wind turbines;
 - several critical processes during the recycling process was pointed out;
 - high amount of useful material discharged.
 - time consuming tasks;
 - small or medium enterprises if industrial symbiosis.

Contacts:

- Limad wlimad@usp.br
- Malu malu@lsi.usp.br

Acknowledgements

Wind Energy Company and its people

