5th International Workshop - Advances in Cleaner Production São Paulo - Brazil - 20th to 22nd, May - 2015

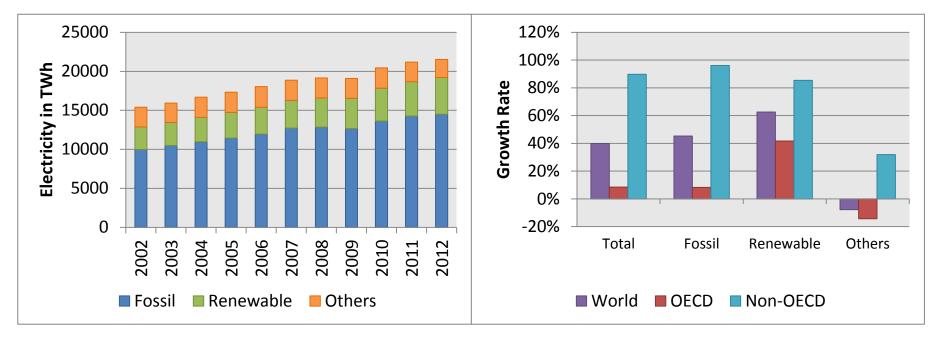
Early Stage Investment and Cost Calculation Methodologies for NO_x Reduction Measures in Large Combustion Plants

MAYER, C., MUELLER, A.-K., FROEHLING, M., SCHULTMANN, F. Karlsruhe Institute of Technology GERMANY

Karlsruher Institut für Technologie

Institute for Industrial Production

Academic Work


Agenda

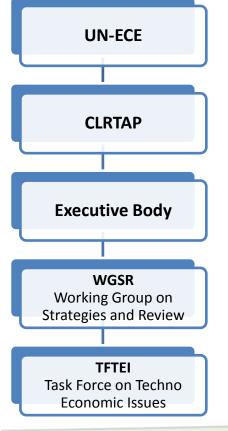
- Introduction and Background
- Investment and Cost Calculation
- Existing Methodologies
- Application
- Results
- Conclusion and Outlook

Worldwide Electricity Generation

Worldwide annual electricity net generation (divided by fuel, 2002-2012) Ten years percentual growth rates of the worldwide electricity net generation (divided by fuel and region, 2002-2012)

Introduction and Scope

- The worldwide electricity demand is rising, fossil fuels are still playing an important role
- Especially in the Non-OECD Countries, the electricity generation from fossil fuels is growing massively, often without any emission reduction measures
- ⇒ These countries have a huge abatement potential and policies need to be supported with cost and investment estimation tools/methods


Scope of this presentation:

- Presenting and comparing two specific methodologies:
 - US EPA cost calculation manual
 - TFTEI investment and cost calculation tool
- Showing advantages and disadvantages of the existing methods
- Ideas for further improvements

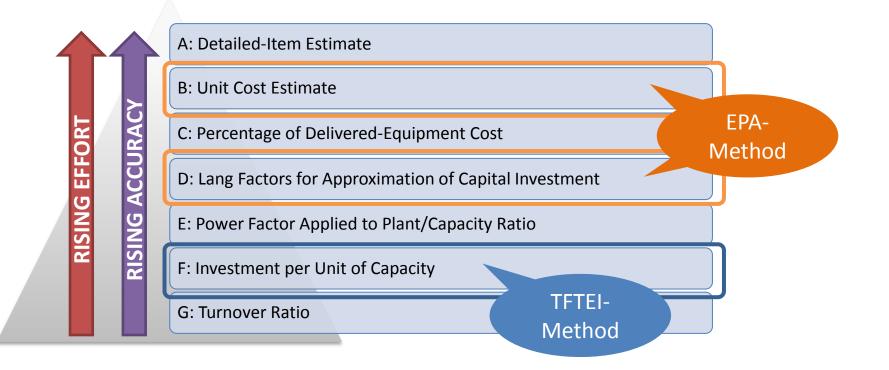
The Work of TFTEI under the CLRTAP

Scope (in this context):

- Cost and investment calculation methodologies
- Secondary NO_x emission reduction measures (SCR, SNCR)
- Fossil fuels (coal, oil, gas)
 - Large combustion plants (LCP > 50MW_{th})

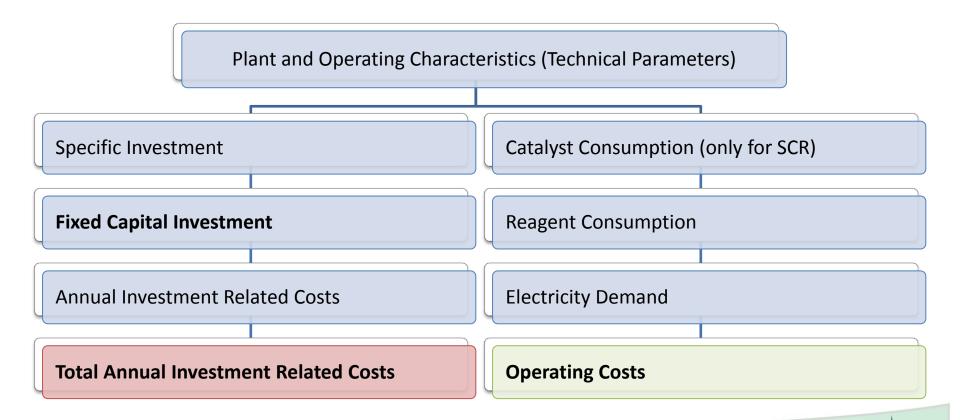
Organizational background of the work:

- TFTEI (former EGTEI) Technical Secretariat
- Financed by France and Italy

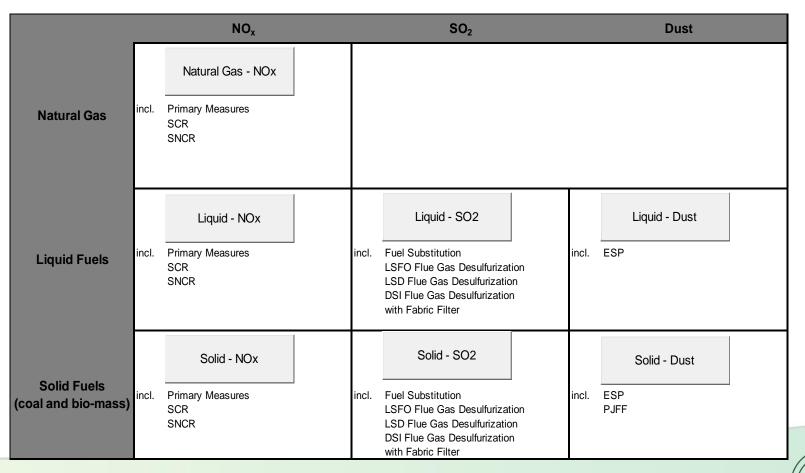

CITEPA

Investment and Cost Calculation

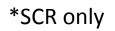
- K^{ERM} : Annual total costs for the evaluated emission reduction measure (ERM)
- K_I^{ERM} : Costs related to investments
- K_{ME}^{ERM} : Costs for inputs and outputs induced by material and/or energy flows
- K^{ERM}_{Process} : Process costs for relevant unit operations
- K^{ERM}_{Other} : Other decision relevant costs


References:

Rentz: Techno-Economy of Industrial Emission Reducion Measures, 1979 Schultmann, et al.: A Methodological Approach for the Economic Assessment of Best Available Techniques. 2001 Spengler: Industrial materials flow management. 1998 VDI Guideline 3800: Determination of the cost of emission control activities, 1979


Existing Methodologies I – TFTEI

The TFTEI Excel-Tool



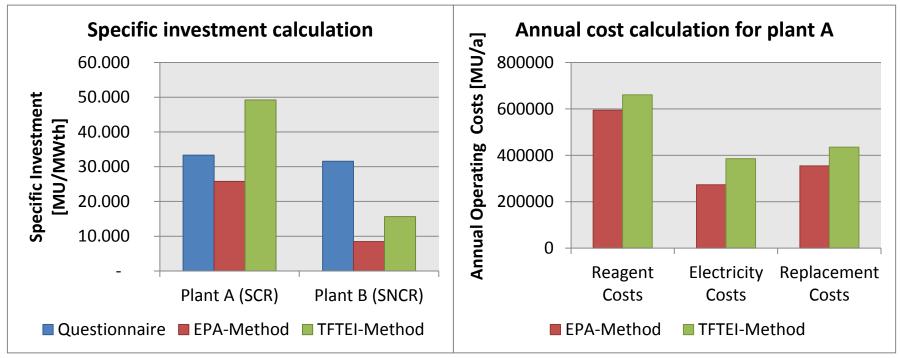
Screenshot of the front page of the TFTEI cost calculation tool to be published on the new TFTEI website in June 2015

Existing Methodologies II – US EPA

- Plant and Operating Characteristics
- Catalyst Volume*
- Reactor Dimensions*
- Reagent Consumption and Tank Size
- Power Consumption
- Catalyst Replacement*
- Calculation of Total Investment and Operating Costs

Application

To compare the two methodologies, a case study has been conducted with two exemplary plants:


Plant A	Plant B
Coal fired	Coal fired
1500 MW _{th}	620 MW _{th}
Equipped with SCR	Equipped with SNCR

The technical and economic data for both plants has been collected in a survey executed by EGTEI in 2012.

Quantitative Results

- \Rightarrow Big deviations between the methods, but within a rather steady proportion
- \Rightarrow Updating of cost factors necessary/recommendable to calibrate the EPA method
- \Rightarrow Small data base

Qualitative Results

	EPA	TFTEI
ages	Lower dependence on single parameters	Literature based reference data
	No experience with existing plants necessary (no assumption of specific investments)	Higher transparency (no empirically determined factors), less complex calculations
Advantages	More precise technical process reproduction in the economical equations	Higher flexibility through specific investment adaptation
7	Documentation and calculation example available	Less input parameters necessary
Disadvantages	Many technical parameters necessary	Strong dependence on specific investments
	No individual influence parameter (e.g. specific investment) that takes the complexity/ circumstances of the system into account	Neglect of technical configuration (e.g. water consumption, tank size, size of the reactor, etc.)
Disa	Few information on origin of cost factors	Less detailed consideration of economic factors (contingencies, engineering, etc.)

Conclusion and Outlook

- No "good or bad" decision possible
- Improvement of database necessary to calibrate the EPA method
- Offering both methods or a combination might be reasonable (taking the availability of data into account)

Further aspects of interest:

- ⇒ Analysing the data quality and the impact of possible uncertainties/ inaccuracies
- \Rightarrow Developing an optimization model to define ideal investment strategies
- \Rightarrow Investigating dynamic aspects (what is the best time for an investment)

- Peters, M., Timmerhaus, K., West, R., 2003. Plant Design and Economics for Chemical Engineers. 5. McGraw-Hill Education, New York.
- Rentz, O., 1979. Techno-Economy of Industrial Emission Reducion Measures. Techno-Ökonomie betrieblicher Emissionsminderungsmassnahmen (in German), Erich Schmidt Verlag, Berlin.
- Schultmann, F., Jochum, R., Rentz, O., 2001. A Methodological Approach for the Economic Assessment of Best Available Techniques. The International Journal of Life Cycle Assessment. Volume 6, Issue 1, 19-27.
- Spengler, T., 1998. Industrial materials flow management economic planning and control of materials and energy flows in manufacturing plants. Industrielles Stoffstrommanagement - Betriebswirtschaftliche Planung und Steuerung von Stoff- und Energieströmen in Produktionsunternehmen (in German). Erich Schmidt Verlag, Berlin.
- TFTEI, 2015. Estimation of Costs of Reduction Techniques for LCP Methodology. TFTEI technical secretariat.
- US EIA, 2015. International Energy Statistics, United States Energy Information Administration. http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=2&pid=2&aid=12&cid=regions&syid=2002&eyid=2012&unit=BK WH, last accessed February 2015.
- US EPA, 2002. Air Pollution Control Cost Manual. 6. EPA/452/B-02-001, United States Environmental Protection Agency.
- VDI Richtline 3800, 1979. Determination of the cost of emission control activities. Kostenermittlung für Anlagen und Maßnahmen zur Emissionsminderung (in German). VDI-Handbuch Reinhaltung der Luft 6, Düsseldorf.

5th International Workshop - Advances in Cleaner Production São Paulo - Brazil - 20th to 22nd, May - 2015

Thank you very much for your attention! MAYER, C., MUELLER, A.-K., FROEHLING, M., SCHULTMANN, F. Karlsruhe Institute of Technology Carmen.mayer@kit.edu http://www.iip.kit.edu/

Karlsruher Institut für Technologie

Institute for Industrial Production

Academic Work