

How to Measure/Assess Sustainability in the Future Post-Fossil Fuel Society?

The Coin

The words ecology and economy share common roots — both originate from the Greek word "oikos", meaning "home". These common origins illustrate the fundamental link between the environment and our economy.

Limitations of GDP

- It ignores several components that do not involve monetary transactions
- It fails to assess changes in human capital, and does not account for the circulation of income among individuals, which can enhance personal and social wellbeing
- It counts every expenditure as positive and does not discriminate welfare-enhancing activity from welfare-reducing activity
- It ignores different visions of the goals of development, such as cultural differences, overlooking inequities.
- It ignores environmental costs, natural resource depletion rates, and, contradictorily; it includes the costs of environmental remediation as valuable production.
- It disregards longer-term negative consequences of short-term exploitation of the ecosystem and of eco-system's services.

Proposed alternatives and supplements to GDP

- Two main approaches :
- 1st approach uses GDP as foundation to build a complete index:
 - greening GDP
 - Socializing GDP
- 2nd approach indices are constructed independently of GDP
 - environmentally oriented indicators
 - socially oriented indicators

1st approach greening or socializing GDP

Limitations:

the subjectivity in deciding which expenses are valuable and must be added to the total and which are disruptive, and must be subtracted;

the need for consensus on how to value social and environmental items that are not reported in monetary terms (ecosystems services, natural resources, volunteer labor or illegal activities);

the need for consensus on how to quantify the costs of natural resources depletion;

the subjectivity of selecting and classifying the most representative variables and/or indicators that form the basis of the indices.

2nd approach Efforts to redefine the indicators

Environmentally oriented indicators

- consider the environmental limits to develop and growth.
- designed to monitor carrying capacity, instead of measuring societal progress

Socially oriented measures

- based on the judgments of the survey respondents
- cultural differences make it complex to compare the results across different ethnic, gender, age, religion, and other cultural boundaries.

2nd approach Combining social and environmental concerns

Composite indexes

- merge different measures into a single number consisting of GDP plus social and environmental concerns
- uncertainty and methodological approaches are still foremost issues both in constructing the indices as well their use by decision makers.
- social and environmental development may have opposite directions.

Set of indicators

- troublesome to understand by the general public and stakeholders
- allow incomplete or biased interpretations by groups with particular interests or limited knowledge.

What indicators may be used to evaluate progress?

 All attempts to measure progress have attracted criticism regarding:

- valuation techniques and methods
- limitations and scope.

Can measures of well-being and progress help societies to achieve SD?

	GDP	GDPpc	HDI	HLY	LY	D. Index	EF	SB	WI	ESI-2002
R	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	< 0.1	<0.1
N	0.6	0.2	0.2	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
F	0.9	0.5	0.5	0.5	0.5	0.3	-0.4	-0.3	< 0.1	< 0.1
EYR	-0.2	-0.4	-0.4	-0.3	-0.4	-0.4	0.3	0.5	- 0.2	< 0.1
ELR	-0.2	-0.3	-0.4	-0.2	-0.4	-0.1	0.2	0.5	< 0.1	< 0.1
ESI	-0.2	-0.4	-0.4	-0.2	-0.4	-0.2	0.3	0.6	< 0.1	<0.1

R: renewable natural resources; N: non-renewable resources; F: resources from the
economy; EYR: Emergy Yield Ratio; ELR: Environmental Load Ratio; ESI: Environmental
Sustainability Index; GDP: Gross Domestic Product (GDP); Gross Domestic Product
(GDPpc), HDI: Human Development Index, HLY: Happy Life Years, LY: life years, EF:
Ecological Footprint; SB: Biocapacity Surplus; Democracy Index (D. Index); WI: wellbeing
Index, ESI-2002: Environmental Sustainability Index-2002.

Can measures of well-being and progress help societies to achieve SD?

Can measures of well-being and progress help societies to achieve SD?

Sustainability dimensions

	Redundancy	Redundancy		
	Socio-economic	Biophysical		
Complementarity	GDP GDPpc	R		
,	HLY	EF		
	LY	SB		
	D. Index	EYR		
	HDI	ELR		
	WI	ESI		

Where: R: renewable natural resources; N: non-renewable resources; F: resources from the economy; EYR: Emergy Yield Ratio; ELR: Environmental Load Ratio; ESI: Environmental Sustainability Index; GDP: Gross Domestic Product (GDP); Gross Domestic Product (GDPpc); HDI: Human Development Index, HLY: Happy Life Years, LY: life years, EF: Ecological Footprint; SB: Biocapacity Surplus; Democracy Index (D. Index); WI: Wellbeing Index.

All attempts to measure progress have attracted criticism regarding certain valuation techniques, limitations and scope.

Consequently, there is a need for a global dialogue and consensus on these issues, and there are still some questions that need help from the academic, social and political communities to be answered.

- How to Measure/Assess Sustainability in the Future Post-Fossil Fuel Society?
- What indicators may be used to evaluate progress the Future Post-Fossil Fuel Society?
- How will they be measured?
- What can be done within the possibility of the existing accounts?
- Who will select those indicators for in the Future Post-Fossil Fuel Society?
- To whom those indicators are of interest in the Future Post-Fossil Fuel Society?