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A B S T R A C T   

Sector aggregation under the input-output framework may lead to deviation in results and the lack of detailed 
sectoral information, which hinder the targeted implementation of accurate sectoral adjustment policies. This 
paper explores the effects of sector aggregation on the embodied carbon emission of the residential consumptions 
of Beijing and Shanghai based on the city-centric global multi-region input-output (CCG-MRIO) model. Inte-
grating with structural path analysis and structural decomposition analysis, the impacts of sector aggregation on 
the identifying of critical emission transmission paths and driving forces are also revealed. Three sector aggre-
gation datasets are discussed to track the sector aggregation effect in 2012 and 2017. The findings show that the 
carbon emission results at 8 sector level better align with the results at the 22 sector level than those at 32 sector 
level. Moreover, sector aggregation will lead to the absence of some critical carbon transmission paths, some 
factor contributions on carbon emission also changed their directions at different sector levels. On the basis of 
clarifying the sector aggregation effect on embodied carbon emission, the research results provide a reference for 
similar studies to select the appropriate level of sector aggregation, to realize the goal of simplifying the 
calculation or gaining more detailed sectoral emission information.   

1. Introduction 

With the globalization of trade, regional carbon emission especially 
the carbon emission embodied in inter-regional trade, have attracted the 
extensive attention of climate economists. With large population and 
active foreign trade, cities’ growing residential consumptions have 
caused a large amount of embodied carbon emission along the supply 
chains among regions, which has become the main driver of carbon 
emission growth (Wang and Feng, 2021). Adopting sectoral carbon in-
ventory as the satellite account, the multi-region input-output (MRIO) 
method has been widely used to study interregional linkages and their 
contribution to carbon emission (Zhou et al., 2018). Compared with the 
single-region input-output (SRIO) method, the MRIO table can describe 
input-output relationships between regions, which has important prac-
tical and research value for formulating emission reduction measures 

effectively through analysis of interregional trade flows. 
The traditional MRIO model is based on the input-output table which 

contains several regions at an equal level, so only the inter-regional 
input-output relationship at the same regional level, such as between 
cities (Wang et al., 2020), or between countries (Dawkins et al., 2019), 
can be analyzed. It would be more scientific to integrate domestic trade 
and international trade into the same framework for comprehensive 
research, so the sources of embodied carbon emission from a city’s 
residential consumption can be more comprehensively reflected, the 
city-centric global multi-region input-output (CCG-MRIO) model pro-
posed by Lin et al. (2017) can realize such research need. However, 
building a CCG-MRIO model means higher data processing re-
quirements, which will cause larger uncertainty in the sector integration 
process to make the sector classification of different databases consis-
tent. Unfortunately, researchers often split or merge the sectors based on 
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the national or international sector classification catalogs, the number of 
sectors after consolidation is random and the most detailed sectoral level 
available is not given priority, so the possible effect of different sector 
aggregation levels on embodied carbon emission results is usually 
ignored. Such neglect may lead to the loss of available information if the 
sectoral disaggregation can bring accurate and additional information, 
or unnecessary complex data processing if the goal is only to locate some 
highly aggregated sectors with significant emission contributions or 
focus on regional emission contributions. Although some scholars have 
tried to analyze the sectoral aggregation effect on the analysis results in 
single-region studies (Su et al., 2010) and multi-region analysis 
(Bouwmeester and Oosterhaven, 2013; de Koning et al., 2015; Zhang 
et al., 2019), there is still a lack of sectoral aggregation research on the 
CCG-MRIO analysis, especially for the detailed discussion on the effect 
of sector aggregation on embodied carbon emission flows and the 
contribution of emission drivers. For the CCG-MRIO tables that need to 
be constructed by researchers themselves, the impact of sectoral ag-
gregation on carbon emission based on this table may be more obvious 
than that of traditional MRIO table. 

This study aims to reveal how sector aggregation affects the 
embodied carbon emission changes in CCG-MRIO results. Taking resi-
dential consumptions of Beijing and Shanghai with international trade 
activities as examples, the sectoral and regional contribution results, 
factor contribution results based on structural decomposition analysis 
(SDA) and critical path results based on structural path analysis (SPA) 
are studied. The contribution of this paper is to give a detailed analysis 
of the sectoral aggregation effect on regional consumption-side 
embodied carbon emission, and the empirical research results show 
the trade-off between using assumptions to make up for data defects and 
not using assumptions to give up additional sector information, and 
provide possible scenarios for highly aggregated sector level that can 
simplify calculations. 

2. Literature review 

As a research tool for interregional trade linkages in goods and ser-
vices, the MRIO method has been widely used to track the embodied 
carbon emission of final consumption (Liu et al., 2015). Residential 
consumption is an important component of regional carbon emission 
with the improvement of residential living standards (Wang et al., 
2019a), so examining the source and change of the carbon emission 
embodied in residential consumption is significant for regional carbon 
emission control. Scholars have studied the embodied carbon emission 
of residential consumption at various spatial scales based on the MRIO 
method. Ma et al. (2022) used the MRIO method and consumption 
expenditure data to study the regional carbon emission of residential 
consumption in China, and they found that the carbon emission in the 
southeast region is the largest. Liu et al. (2022) adopted the MRIO 
method to investigate the regional disparity change trends of urban 
residential embodied carbon emission from 2002 to 2012 in China, they 
found that the eastern regions have larger emission growth and the 
western regions have faster emission increase rates. With the increasing 
development of international trade, some scholars began to put inter-
national trade into a single region’s embodied carbon emission analysis, 
such as the embodied emission research of in China-India trade studied 
by Wang and Yang (2020), and the carbon flow research of China and its 
trading partners conducted by Yan et al. (2020). Under this background, 
Lin et al. (2017) have proposed the city-centric global multi-region 
input-output (CCG-MRIO) model to provide a bridge to analyze the 
relationship between individual cities and the utilization of sectoral 
products in various countries around the world to study further the city’s 
consumption embodied carbon emission. 

The contribution of each sector and region to the total embodied 
carbon emission can be obtained based on the MRIO analysis. Still, it 
tends to pursue more detailed research on the embodied emissions of 
input-output process between sectors and regions to reflect the changes 

more clearly in regional embodied carbon emission. The structural path 
analysis (SPA) has been used to identify the critical environmental 
transmission paths by tracing back the intricate production chains 
(Hong et al., 2016), the SPA uses the Tayler expansion equation of the 
Leontief inverse matrix to identify embodied carbon emission on each 
supply chains among sectors (Zhang et al., 2021). Growing literature 
uses it to find out the important embodied carbon emission transmission 
path among sectors. Fang and Yang (2021) used the structural path 
analysis method to identify the critical supply chain paths driving 
embodied carbon emission changes in Sichuan province. They found 
that the petroleum processing, agriculture, and transportation sectors 
are the key upstream sectors driving the growth of embodied carbon 
emission. Zhao et al. (2021) studied the carbon emission transmission 
path of China’s electricity sector based on the structural path analysis 
method, and the results reflect that Eastern China and South China are 
the sources of inflow paths in consumption centers, while Central China, 
Guangdong and Jiangsu are the sources of outflow paths for production 
centers. Apart from the embodied carbon emission path, the SPA can 
also be applied to energy (Su et al., 2019; Yang et al., 2020), SO2 
emission (Wang et al., 2019b), energy-water nexus analysis (Shi et al., 
2020; Wang and Chen, 2021) and other fields. 

Many factors influence the embodied carbon emission changes, and 
the structural decomposition analysis (SDA) can study these factor 
contributions to embodied carbon emission changes at the sectoral and 
regional levels. Compare with another factor decomposition method as 
the index decomposition analysis (IDA) focus on the summary on 
emission changes, SDA is usually applied to study the demand-side ef-
fects and trade-related issues (Wang et al., 2017), and SDA can give a 
comprehensive analysis of direct and indirect effects (Hoekstra and van 
der Bergh, 2003; Su and Ang, 2012a). It has additional and multiplica-
tive two decomposition forms. The additional form is used for the 
decomposition of absolute indicators, such as the total carbon emission 
(Cansino et al., 2016), while the multiplicative form is used for the 
decomposition of relative indicators, such as the carbon emission in-
tensity (Su and Ang, 2017). In the carbon emission research adopting the 
SDA method, Xie et al. (2019) used the method to decompose the carbon 
emission changes of China’s transportation industry into eight factors’ 
contributions, including energy structure, energy intensity, input mix 
and five final use categories, they have found that the energy intensity 
factor played a dominant role in reducing emissions. Jiang et al. (2021) 
applied the method to decompose the global carbon emission change 
into six influencing factors as the carbon emission intensity, the do-
mestic and international input structures, consumption pattern and 
consumption volume, and population, and the results have shown that 
the domestic input structure factor help to reduce largest carbon emis-
sion. Among various influencing factors, the carbon intensity factor, 
input-output structure factor and final demand factor are the three most 
common influencing factors that represent the impact of efficiency 
change, input-output structure change and demand change on the 
change of embodied carbon emission (Su and Ang, 2012b). Combined 
with the SPA method, a clear view of regional embodied carbon emis-
sion changes can be presented. 

The sector aggregation effect is an issue that is easily often ignored 
but it is exist and is crucial in the environmental input-output research, 
the different choices of sector aggregation level lead to the discrepancy 
in embodied carbon emission results (Su et al., 2010). In dealing with 
such issue, Lenzen (2011) encourages the disaggregation of input-output 
data even based on few real data instead of the aggregation of envi-
ronmental data. Steen-Olsen et al. (2014) suggest a high level of sectoral 
detail based on real data can significantly improve the accuracy of the 
results. Bouwmeester and Oosterhaven (2013) think that the specific 
aim of a study is a determining factor of the required sector level. de 
Koning et al. (2015) and Zhang et al. (2019) tend to use high resolution 
sector level and preserve as much sectoral detail as possible. The 
appropriate sector level is a comprehensive balance of research purpose, 
sector information details, computational complexity, and data 
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accuracy, which may be more important in the CCG-MRIO model with 
complex data processing than traditional input-output models, and the 
comprehensive sector aggregation study on embodied carbon emission 
changes involve embodied emission flows and factor emission contri-
butions in such model is still absent. Therefore, taking residential con-
sumptions of Beijing and Shanghai with developed international trades 
as example, this paper examines how the sector aggregation level affects 
the embodied carbon emission results under the CCG-MRIO framework, 
so as to provide a reference for the subsequent research on the selection 
and treatment of sectoral aggregation level. 

3. Method and data 

3.1. Method 

3.1.1. The embodied carbon emission based on the CCG-MRIO model 
This paper introduces the adjustment proposed by Lin et al. (2017) to 

format a city-centric global multi-region input-output (CCG-MRIO) 
table, the detailed process and the schematic diagram are presented in 
Appendix A. The process to format the CCG-MRIO table is different 
from the embedded regional IO dataset into the global dataset proposed 
by Su et al. (2021), the latter focus on the disaggregation of China in the 
global WIOD dataset according to the interregional structure in China’s 
MRIO dataset and regional bilateral trade with world countries in the 
global WIOD datasets, while the CCG-MRIO table formation committed 
to estimating the trade matrix between cities and their trade regions. 
The embodied carbon emission of local residential consumption is 
calculated as: 

Cl = f ′Lyl = f ′
vHyl = f ′ H

∑
yg,l =

∑
f ′

vHyg,l

∑
Cg,l (1)  

where the f is the carbon intensity vector of total output, fv is the carbon 
intensity vector of value added, v is the integrated value added vector, k 
= x/v is the primary input coefficient vector, L is the Leontief inverse 
matrix, H = k̂L is the value added requirement coefficient matrix, yl is 
the vector of integrated local residential consumption, yg,l is the products 
input from region g to local residential consumption vector, Cg,l is the 
embodied carbon emission vector of local residential consumption 
contributed by the products input from region g. 

Based on the Eq. (1), the embodied carbon emission changes from 
base year 0 to research year 1 can be formulated as: 
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where the ci, ps, fd represent the carbon intensity factor (reflect the ef-
ficiency changes), input-output structure factor (reflect the input-output 
structure changes) and final demand factor (reflect the consumption 
demand changes), respectively. The ΔCl

ci, ΔCl
ps, and ΔCl

fd represent 
contributions of carbon intensity factor, input-output factor, and final 
demand factor on local (Beijing and Shanghai) residential embodied 
carbon emission changes, respectively. The two-polar decomposition 
form proposed by Dietzenbacher and Los (1998) is used to obtain the 
contributions of these three factors to the embodied carbon emission 
changes in local residential consumption. 

Based on the Talyor expansion of the Leontief inverse matrix (Wood 
and Lenzen, 2003), the structural path analysis is used to identify the 
transmission paths of embodied carbon emission among sectors of 
different regions as: 
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(3)  

where each addition item on the right side of the Eq. (3) represents a 
transmission path of embodied carbon emission, m is the total number of 
regions, n is the total number of sectors. r, s and t are the regional 
numbers, i,j and g are the sectoral numbers. A is the direct consumption 
coefficient matrix. To extract the key transmission path of embodied 
carbon emission effectively and reduce the computational complexity, 
the 0.1% threshold of the total embodied carbon emission is set to trim 
some trivial paths. Finally, 30 paths with the largest embodied carbon 
emission are identified to trace the sector aggregation effect on path 
results under three datasets. 

3.1.2. Sector aggregation effect on embodied carbon emission 
There are usually two sector levels in the environmental input-output 

studies, the first level is the sector classification level that retains the 
existing carbon emission data to the greatest extent, the second level is 
the sector classification level that retains the most detailed input-output 
sectoral data. We assume the first level has N sectors and the second 
level has M sectors, and N is usually lower than M. The relative change 
value proposed in Su et al. (2021) is used to quantify the sector aggre-
gation effect (SAE) on the embodied carbon emission between the two 
sector aggregation levels as: 

SAE =
CM − CN

CN
× 100% (4)  

where the CM is the embodied carbon emission at the M sector aggre-
gation level, and the CN is the embodied carbon emission at the N sector 
aggregation level. Similarly, based on the Eq. (4), the sector aggregation 
effect on the emission contributions of sectors can be formulated as: 

SAEg =
Cg,M − Cg,N

Cg,N
× 100% (5)  

where the SAEg is the sector aggregation effect on the emission contri-
bution of sector g. The sector aggregation effect on structural decom-
position analysis results can be formulated as: 

BSAci =
ΔCci,M − ΔCci,N

C0
N

× 100% (6)  

BSAps =
ΔCps,M − ΔCps,N

C0
N

× 100% (7)  

BSAfd =
ΔCfd,M − ΔCfd,N

C0
N

× 100% (8)  

where the BSAci, BSAps, and BSAfd are the sector aggregation effects on 
the contributions of carbon intensity factor, input-output structure fac-
tor, and final demand factor, respectively. The sector aggregation effect 
on regional influencing factors’ contributions to the embodied carbon 
emission can also be calculated on similar methods. 

Different datasets contain three different sector levels in this paper. 
The first dataset is set as L1 dataset contains 8 sectors, it is a typical 
sector classification level for simplified calculation. The second dataset 
contains 22 sectors, it is the most detailed sector level by considering the 
available sectoral carbon emission data of all regions. The third dataset 
is set as L3 dataset contains 32 sectors, it is the most detailed sector level 
aggregated by considering the consistent sector classification data in 
different input-output tables, the consistent intensity assumption (it 
assume the carbon emission intensity of sub-sectors are consistent with 
that of their father sector) is applied to supplement the unavailable 
sectoral carbon emission data. The sectoral IDs, names, and 
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corresponding relationships in three different datasets are given in Ap-
pendix B. It should be noted that the L2 dataset is defined as the basic 
dataset, for it ensures the most detailed sectoral classification on the 
available data, unlike L1 dataset with sector combination or L3 datasets 
with sector expansion. The results of L2 dataset are further aggregated 
into the 8-sector level of L1 dataset to make comparisons between L1 
and L2 datasets, and the results of L3 dataset are further aggregated into 
the 22-sector level of L2 dataset to make comparisons between L2 and L3 
datasets. 

3.2. Data 

Three kinds of input-output tables are involved in this paper, the 
inter-country input-output tables were obtained from the database of the 
Organization for Economic Co-operation and Development (OECD, 
2021), the local input-output tables of Beijing and Shanghai were taken 
from the local statistics bureau, and the China provincial multi-region 
input-output tables were taken from the Carbon Emission Accounts 
and Datasets (CEADs, 2022). The sectoral carbon emission data from 
Shan et al. (2018) and Shan et al. (2020) were used for Beijing, 
Shanghai, and mainland China (the rest of mainland China by deducting 
Beijing and Shanghai, respectively), while the sectoral carbon emission 
data in carbon dioxide emissions embodied in international trade 
database from OECD were used for other regions. Local import and 
export trade data of Beijing and Shanghai are taken from their customs 
statistical database, while the import and export data of other region-
s/countries are taken from OECD database. 

The residential carbon emission of Beijing and Shanghai from 2012 
to 2017 are studied in this paper, while the 2017 input-output table is 
the latest. Due to the limited access to sectoral carbon emission data and 
the different sectoral classification in different input-output tables, the 
ISIC Rev 4.0 (UN, 2008) and the National Industries Classification (GB/T 
4754–2017) from National Bureau of Statistics are used to ensure the 
consistent classification after sectoral consolidation process. The 
spherical distances between cities and the capital of their trade regions 
are taken from Google Maps. The rest of the world (ROW) is excluded 
because there are significant uncertainties in determining the distance 
between local (Beijing and Shanghai) and the ROW, which causes a 
significant result deviation in the gravity model and further leads to the 
result deviation. There are 65 regions involved in this study, and the IDs 
and names of these regions are presented in Table 1. 

4. Results 

4.1. The residential embodied carbon emission based on the CCG-MRIO 
model 

The results of sectoral contributions on total embodied carbon 
emission at the 8-sector level are shown in Fig. 1. The sector aggregation 
has little impact on identifying the sector with the largest emission 
contribution between L1 and L2 datasets. Except for Beijing in 2012, 
which has different sectors with the largest emission, they are the “L1S3- 
Light Industry” (23.75 Mt) in L1 dataset and the “L1S8-Other Services” 
(23.05 Mt) in L2 dataset, and the “L1S3-Light Industry” has only 0.16 Mt 
less emission than “L1S8-Other Services” in L2 dataset, others all have 
the same sector with the largest emission. It is the “L1S5-Production and 
Supply of Electric Power, Heat Power, Gas, and Water” has the largest 
emission contribution in both L1 (41.09 Mt) and L2 (45.44 Mt) datasets 
in 2012 Shanghai, and the “L1S8-Other Services” has the largest emis-
sion contribution in both L1 and L2 dataset for Beijing (29.30 Mt in L1 
dataset and 29.60 Mt in L2 dataset) and Shanghai (30.88 Mt in L1 
dataset and 31.90 Mt in L2 dataset) in 2017. 

Interestingly, the most apparent sector aggregation effect (SAE) on 
sectoral emission contributions does not necessarily occur in the 
aggregated sectors. The sector in 2012 of Beijing with the strongest SAE 
is “L1S6-Construction” (SAE is 43.74%), and this sector even has the 

strongest SAE in 2012 and 2017 for Shanghai (SAE in 2012 is 82.96%, 
SAE in 2017 is 25.84%). The construction sector is the same single sector 
under the three datasets, so its strong sector aggregation effect depicts 
that the emission contribution of a sector without sector aggregation 
process will also be affected by the aggregation process of other sectors. 
There is also no relationship between the sector aggregation effect and 
the number of aggregated sectors. For example, the “L1S4-Heavy In-
dustry” contains 9 sectors and the “L1S7-Commerce and Transportation” 
includes 2 sectors in L2 dataset, the heavy industry has a stronger sector 
aggregation effect than that in commerce and transportation in 2012 
Beijing, but it turns to the opposite results in 2017. Such irrelevant 
property also occurs at the 22-sector level, as presented in Fig. 2, which 
shows the sectoral emission contributions of L2 and L3 datasets at the 
22-sector level. 

The sectoral emission results in 2012 have more evident discrepancy 
than that in 2017 of Beijing and Shanghai at 22-sector level. The SAE 
ranges from − 0.35% to 16.89% in 2017 of Beijing (it ranges from 
− 44.05% to 170.57% in 2012), and ranges from − 9.60% to 3.06% in 
2017 of Shanghai (it ranges from − 45.53% to 66.48% in 2012), the 
range fluctuations are small in 2017. The strongest SAE on sectoral 
emission contribution in 2012 is the “L2S18-Production and Distribution 
of Water” in Beijing (SAE is 170.57%) and the “L2S19-Construction” in 
Shanghai (SAE is 66.48%). The sectoral emission contribution of 
“L2S17-Production and Supply of Electric Power, Heat Power and Gas” 
is also noteworthy despite its relative less obvious SAE than the above 
two sectors (SAEs are − 28.45% and − 30.66% in Beijing and Shanghai, 
respectively), its absolute contribution has decreased by 4.33 Mt from L2 
to L3 dataset in Beijing, and decreased by 13.67 Mt from L2 to L3 dataset 
in Shanghai. The strong SAEs of these three sectors derive from the 
input-output structure differences between L2 and L3 datasets, as their 
carbon intensities and final products for residential consumptions are 
consistent in L2 and L3 datasets. In contrast, the aggregated sector in L2 
dataset, such as “L2S22-Other Services” (it contains 9 sub-sectors in L3 

Table 1 
The IDs and names of 65 regions.  

Regional ID Regional Name Regional ID Regional Name 

R01 Local R34 Spain 
R02 Australia R35 Sweden 
R03 Austria R36 Switzerland 
R04 Belgium R37 Turkey 
R05 Canada R38 United Kingdom 
R06 Chile R39 United States 
R07 Colombia R40 Argentina 
R08 Costa Rica R41 Brazil 
R09 Czech Republic R42 Brunei Darussalam 
R10 Denmark R43 Bulgaria 
R11 Estonia R44 Cambodia 
R12 Finland R45 Croatia 
R13 France R46 Cyprus 
R14 Germany R47 India 
R15 Greece R48 Indonesia 
R16 Hungary R49 Kazakhstan 
R17 Iceland R50 Lao People’s Democratic Rep 
R18 Ireland R51 Malaysia 
R19 Israel R52 Malta 
R20 Italy R53 Morocco 
R21 Japan R54 Myanmar 
R22 Korea R55 Peru 
R23 Latvia R56 Philippines 
R24 Lithuania R57 Romania 
R25 Luxembourg R58 Russian Federation 
R26 Mexico R59 Saudi Arabia 
R27 Netherlands R60 Singapore 
R28 New Zealand R61 South Africa 
R29 Norway R62 Thailand 
R30 Poland R63 Tunisia 
R31 Portugal R64 Viet Nam 
R32 Slovak Republic R65 Mainland China 
R33 Slovenia    
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Fig. 1. Sectoral contributions on residential embodied carbon emissions of Beijing and Shanghai at 8-sector level.  

Fig. 2. Sectoral contributions on residential embodied carbon emissions of Beijing and Shanghai in L2 and L3 datasets at 22-sector level.  
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dataset), its SAEs are only 8.60% and 1.59% in Beijing and Shanghai in 
2017 respectively. Therefore, the input-output structure change from 
the merger operation of one sector could affect the emission contribu-
tion of other sectors, and may lead to wrong judgment if researchers 
only focus on identifying the sector with the largest contribution. 

The sector aggregation also leads to the regional emission contri-
bution differences among the three datasets. Since the emission contri-
bution of each region is the integration of its sectoral emission 
contributions, the regional contribution is more vulnerable to the impact 
of sectoral aggregation than the sectoral contribution, and the contri-
bution fluctuates is more complex at different sectoral levels, as pre-
sented in Fig. 3. The average SAE values of Beijing are − 5.46% and 
− 2.41% in 2012 and 2017 in L1 dataset, and the values are 32.68% and 
74.09% in 2012 and 2017 in L3 dataset; the average SAE values of 
Shanghai are − 7.06% and − 7.67% in 2012 and 2017 in L1 dataset, and 
the values are 11.28% and 7.86% in 2012 and 2017 in L3 dataset, 
indicate that the regional emission contributions tends to decrease in L1 
dataset after sector consolidation in L2 dataset, while the regional 
emission contributions tend to increase in L3 dataset after sector 
expansion in L3 dataset. The average absolute SAE values of L1 and L3 
datasets reflect that the regional emission contributions in L3 dataset 
were affected by relatively stronger SAE than that in L1 dataset, as the 
average absolute SAE values of L1 dataset are 10.70% and 11.59% in 
2012 and 2017 in Beijing, while the values of L3 dataset are 38.84% and 
80.54% in 2012 and 2017 in Beijing; the average absolute SAE values of 
L1 dataset are 18.59% and 17.41% in 2012 and 2017 in Shanghai, while 
the values of L3 dataset are 28.09% and 17.18% in 2012 and 2017 in 
Shanghai. In addition, the L3 dataset tends to have more extreme SAE 
values than L1 dataset, as the strongest SAE on regional emission 

contributions in these two cities all appeared on L3 dataset in 2012 and 
2017 (the SAE of R50-Lao People’s Democratic Rep is 417.77% in Fig. 3 
(a), the SAE of R17-Iceland is 159.17% in Fig. 3(b), the SAE of R17- 
Iceland is 972.00% in Fig. 3(c), the SAE of R22-Korea is 151.40% in 
Fig. 3(d)). These differences of SAEs in L1 and L3 datasets prove that the 
regional emission contributions in L3 dataset tend to have more inten-
sive fluctuations than that in L1 dataset, resulting from the unreal car-
bon intensities of expansion sectors in L3 dataset. 

It is worth noting that the extreme SAE values tend to appear on the 
regions with little emission contributions in L2 dataset, as the contri-
bution of R50-Lao People’s Democratic Rep on Beijing’s residential 
embodied emission in 2012 is only 0.028 Mt, the contribution of R17- 
Iceland on Beijing’s residential embodied emission in 2017 is only 
0.003 Mt, the contribution of R17-Iceland on Shanghai’s residential 
embodied emission in 2012 is only 0.010 Mt (the contribution of R22- 
Korea on Shanghai’s residential embodied emission in 2017 is 1.013 

Fig. 3. Sector aggregation effect on regional emission contributions of Beijing and Shanghai in L1 and L3 datasets at 22-sector level of L2 dataset.  

Table 2 
Top 5 regions with the largest emission contributions on residential embodied 
emission of Beijing and Shanghai in three datasets.   

L1 dataset L2 dataset L3 dataset 

Beijing 2012 R1, R65, R39, R22, 
R14 

R1, R65, R39, R14, 
R22 

R1, R65, R39, R14, 
R22 

Shanghai 
2012 

R1, R65, R39, R47, 
R64 

R1, R65, R39, R47, 
R64 

R1, R65, R39, R47, 
R21 

Beijing 2017 R65, R1, R39, R14, 
R47 

R1, R65, R39, R14, 
R47 

R1, R65, R39, R14, 
R47 

Shanghai 
2017 

R1, R65, R39, R47, 
R64 

R1, R65, R39, R47, 
R21 

R1, R65, R39, R22, 
R21  
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Mt). Therefore, when the intensity assumption is used to expand the 
sector to obtain more sectoral information, it may also lead to a large 
deviation in the regional emission contributions, especially for regions 
with small contributions, but it will not lead to a deviation in the 
identification of key emission contribution regions, as shown in Table 2. 

4.2. Sector aggregation effect on structural path analysis results 

The top 30 transmission paths under three datasets in 2012 and 2017 
of Beijing and Shanghai are identified based on the 8-sector level of the 
L1 dataset and the 22-sector level of the L2 dataset, the path results are 
presented in Appendix C. Due to the large emission contributions of 
Local (R01) and Mainland China (R65), most of the critical embodied 
carbon emission transmission paths also originate from these two re-
gions. The paths with the largest embodied carbon emission are 
consistent between L1 and L2 datasets at the 8-sector level, it is the same 
path ‘R65.L1S4→R65.L1S4→R65.L1S4’ in 2012 (5.512 Mt in L1 dataset 
and 3.501 Mt in L2 dataset) and 2017 (5.984 Mt in L1 dataset and 3.468 
Mt in L2 dataset) for Beijing, and the same path ‘R01.L1S5→R01. 
L1S5→R01.L1S5’ in 2012 (16.984 Mt in L1 dataset and 12.864 Mt in L2 
dataset) and 2017 (7.769 Mt in L1 dataset and 7.424 Mt in L2 dataset) 
for Shanghai, while there are different paths with the largest embodied 
emission between L2 and L3 datasets at the 22-sector level. 

The sector aggregation has a relative weaker effect on path results 
between L1 and L2 datasets than that between L2 and L3 datasets, not 
only for L1 dataset has the same emission path with the largest 
embodied emission as L2 dataset, but for L1 dataset has more identical 
paths with L2 dataset than L3 dataset. In the listed 30 paths at 8-sector 
level, the L1 and L2 datasets have 21, 26, 21, 21 same paths in 2012 and 
2017 for Beijing and Shanghai. However, the L2 and L3 datasets have 
only 8, 5, 15, 16 same paths in the listed 30 paths at 22-sector level in 
2012 and 2017 for Beijing and Shanghai, which shows that expanding 
sectors by adopting the intensity assumption will lead to significant path 
differences. 

There are two cases of path differences, the first is that part of the 
same path is missing, which can be supplemented by further adjusting 
the path threshold. For example, the largest emission path in L2 dataset 
is the ‘R65.L2S17→R65.L2S17→R65.L2S17’ for Beijing in 2012 (3.247 
Mt) and 2017 (3.050 Mt), while the largest emission path in L3 dataset is 
the ‘R65.L2S17’ for Beijing in 2012 (2.580 Mt) and 2017 (2.273 Mt) at 
the 22-sector level, the two datasets both have recognized that the sector 
‘R65.L2S17’ contains large embodied emissions, the difference is that 
the L2 dataset identifies the high emission characteristics of the sector as 
both the final consumption sector and the upstream supply sector, while 
the L3 dataset only identifies the high emission characteristics of the 
sector in its final consumption. The largest emission path in Shanghai 
has the same situation, it is the ‘R01.L2S17→R01.L2S17→R01.L2S17’ in 
L2 dataset in 2012 (12.801 Mt) and 2017 (7.347 Mt), while the path is 
‘R01.L2S17’ in L3 dataset in 2012 (8.096 Mt) and 2017 (5.888 Mt) at the 
22-sector level. When researchers realize that the identified path is 
missing, they can re-identify the path by reducing the threshold to 
complete the missing part of the path. The other case in path differences 
is the path supplement from some other regions, which is mainly re-
flected in the path recognition results in L3 dataset, the supplemented 
paths are shown in Table 3. The regions of the listed paths in Table 3 
only appear in the listed top 30 paths in L3 dataset, such as path ‘R60. 
L2S20’ in 2012 for Beijing, which indicates the transport, storage, and 

post sector of R60-Singapore has a large contribution (0.241 Mt) to the 
residential consumption emission in Beijing, while the L2 dataset failed 
to identify this path. These additional regional key transmission paths 
provided by L3 dataset are undoubtedly valuable for seeking emission 
reduction methods from trade activities, especially when L3 datasets 
ensures that other critical paths (such as the path with largest embodied 
emission) are consistent with that in L2 dataset by threshold adjustment. 

4.3. Sector aggregation effect on structural decomposition analysis results 

The sector aggregation effects on the sectoral emission contributions 
of three factors at 8-sector level are shown in Fig. 4. The contributions of 
input-output structure factor (ps) and final demand factor (fd) have more 
obvious sector aggregation effects than carbon intensity factor (ci), for 
the average absolute values of sector aggregation effect of carbon in-
tensity factor, input-output structure factor, and final demand factor are 
3.34%, 4.42% and 7.77% for Beijing, and the values are 6.09%, 20.63% 
and 22.47% for Shanghai. The “L1S6-Construction” has both the 
strongest sector aggregation effects of input-output structure factor and 
final demand factor for Beijing (− 8.20% for ps and − 32.53% for fd) and 
Shanghai (− 85.09% for ps and 125.09% for fd), since the “L1S1-Agri-
culture” has weak sector aggregation effects on its factor contributions 
and this sector also has no sub-sectors, so the sector aggregation effect 
on sectoral factor contribution has no relationship with the number of 
sub-sectors. The sector aggregation even leads to directional changes in 
input-output structure effect while the sectoral contribution of other two 
factors has no direction changes, which will lead to cognitive bias on the 
nature of factor contributions. For example, the input-output structure 
factor of “L1S7-Commerce and Transportation” in Beijing prompts 0.40 
Mt emission reduction in L1 dataset, but it turns to contribute 0.25 Mt 
emission growth in L2 dataset, making it hard to determine the role of 
the input-output structure on the emission changes of the sector. 
Therefore, the utility change of input-output structural factors after 
sector merger should be treated with caution. 

The sector aggregation effects on factor contribution results at 22- 
sector level are presented in Fig. 5. The strongest sector aggregation 
effect concentrated in a few sectors as “L2S18-Production and Distri-
bution of Water”, “L2S19-Construction”, “L2S20-Transport, Storage, 
and Post”, and “L2S21-Wholesale, Retail Trades, Hotels and Catering”. 
Even though the emission intensity and residential consumption input of 
some sectors are the same in the two datasets, the differences of input- 
output structure between L2 and L3 datasets will also lead to changes 
in carbon intensity effect and final demand effect, not to mention the 
input-output structure effect itself. For example, the “L2S18-Production 
and Distribution of Water” has the same residential consumption input 
between L2 and L3 datasets, but the sector aggregation effect on its final 
demand factor contribution is − 189.68% for Beijing and − 78.88% for 
Shanghai. The “L2S19-Construction” has the same carbon intensity be-
tween L2 and L3 datasets, but the sector aggregation effect on its carbon 
intensity factor contribution is − 11.89% for Beijing and − 280.66% for 
Shanghai. The sector aggregation also leads to directional changes in 
factor impacts of some sectors (for example, the carbon intensity effect 
of “L2S20-Transport, Storage, and Post” changed from negative in L2 
dataset to positive in L3 dataset for both Beijing and Shanghai, the input- 
output effect of “L2S18-Production and Distribution of Water” has the 
same direction changes, the final demand effect of “L2S21-Wholesale, 
Retail Trades, Hotels and Catering” changed from negative in L2 dataset 
to positive in L3 dataset for Shanghai). 

The sector aggregation also impacts on regional factor emission 
contributions, and the results are shown in Fig. 6. There are no obvious 
differences between the sector aggregation effect intensities of L1 and L3 
datasets in carbon intensity factor and input-output structure factor as a 
whole, while the L1 dataset tends to has more extreme sector aggrega-
tion values, such as these two factor contributions of R52-Malta on the 
residential embodied emission changes of Beijing (BSAci is 304.50% and 
BSAps is − 293.32%) and of Shanghai (BSAci is 313.98% and BSAps is 

Table 3 
The supplemented paths in L3 dataset at 22-sector level.  

Beijing 2012 Beijing 2017 Shanghai 2012 Shanghai 2017 

R60. L2S20 
R49. L2S17 
R59. L2S17 

R49. L2S17 
R60. L2S20 
R61. L2S17 
R42. L2S17 

R60. L2S20 R42. L2S17 
R22. L2S17→R22. L2S22 
R59. S17 
R54. S17  
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− 298.27%), which indicate that the carbon intensity factor in L1 dataset 
is more inclined to play a role in promoting the increase of R52-Malta 
contribution on the residential embodied emissions in Beijing and 
Shanghai than that in L2 dataset, and the input-output factor in L1 
dataset is more inclined to play a role in inhibiting the increase of R52- 
Malta contribution on the residential embodied emission in Beijing and 
Shanghai than that in L2 dataset. For the final demand factor, the sector 

aggregate effect in L3 dataset is more significant than that in L1 dataset, 
it tends to promoting more increase of regional contributions on the 
residential embodied emissions in Beijing in L3 dataset than that in L2 
dataset, such as R50-Lao People’s Democratic Rep (BSAfd is 478.48%), 
while the case is opposite in Shanghai, such as R29-Norway (BSAfd is 
− 117.74%). Therefore, the sectoral aggregation will lead to deviations 
between the factor contributions of L1 and L3 datasets (whether in 

Fig. 4. Sector aggregation effects on sectoral SDA results in (a) Beijing and (b) Shanghai at 8-sector level, 2012–2017.  

Fig. 5. Sector aggregation effects on SDA of sectoral emission contributions in (a) Beijing and (b) Shanghai at 22-sector level, 2012–2017.  
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Fig. 6. Sector aggregation effects on SDA of regional emission contributions in (a) Beijing and (b) Shanghai at 22-sector level, 2012–2017.  

D. Xu et al.                                                                                                                                                                                                                                       



Ecological Modelling 484 (2023) 110487

10

sectoral or regional factor contributions) and L2 datasets, and even lead 
to directional changes in some factor contributions, which reminds us to 
carefully consider the changes in factor contributions when further 
integrating or expanding sectors. 

5. Discussion 

The city-centric global multi-region input-output (CCG-MRIO) 
model provides a bridge linking the carbon emission research between 
the internal consumption of a single city and its international trade ac-
tivities, and different levels of sectoral aggregation may produce 
different carbon emission results due to the complex model-building 
process. Compared with L3 dataset, the results in L1 dataset have 
weaker sector aggregation effects and less deviation from L2 database, 
that is because the data in L1 database is further processed from L2 
dataset, and all of them are real data. So if the purpose of one study is to 
find some highly aggregated sectors with significant emission and their 
critical emission paths, the results of L1 dataset can simplify the calcu-
lation and ensure the results’ accuracy. However, L1 and L3 datasets do 
not perform well in factor decomposition results due to some directional 
deviations, especially in the contribution positioning of the input-output 
structure factor. Therefore, the contribution of the input-output struc-
ture factor needs to be discussed according to the sector aggregation 
level. The optimal choice is to use the highest sectoral resolution to 
preserve the largest sectoral detail, as suggested by de Koning et al. 
(2015) and Zhang et al. (2019). 

The L3 dataset by adopting the consistent intensity assumption has 
caused some emission discrepancy, but this does not mean that it is 
useless to expand sectors by adopting assumptions. On the contrary, the 
decomposition of highly aggregated sectors can more accurately grasp 
the key emission sectors, so as to facilitate carbon emission reduction 
according to the different sectoral emission characteristics. If the sector 
matching of the carbon emission database is ignored and only considers 
how to maximize the use of the real data of sector emissions, more real 
emission results can be obtained. For example, the sub-sector carbon 
emission data of other regions are provided from OECD database except 
for R01-Local and R65-Mainland China, so the consistent intensity 
assumption can be only applied to the carbon emission intensities for 
sub-sectors in R01-Local and R65-Mainland China while the carbon 
emission intensities of sub-sectors in other regions are obtained by using 
the real data. The carbon emission calculated with this method have 
little differences from those obtained with the consistent intensity 
assumption, for the average deviations in sectoral emissions are only 
0.49% in 2012 and 0.27% in 2017 for Beijing, and they are only 0.98% 
in 2012 and 0.66% in 2017 for Shanghai. For the average deviation in 
regional emissions, they are only 1.78% in 2012 and 1.45% in 2017 for 
Beijing, and they are 0.78% in 2012 and 1.02% in 2017 for Shanghai. 
The factor contribution results also have little deviation, for the de-
viations in sectoral and regional factor contribution results all less than 
10% for Beijing and Shanghai, except for the average deviation in 
regional carbon intensity factor contribution is 23.17%, which mainly 
from the carbon intensity factor of R51-Malaysia, it has prompted more 
0.02 emission growth than that in the result by using the consistent 
intensity assumption. Still, because the contribution direction has not 
changed and the growth is small, the results also not be affected. The 
path results by using the real data in OECD are presented in Appendix 
D, the paths with the largest emission are consistent with that in L3 
dataset, the paths listed are only different in sequence, and basically 
cover all the critical path information of the L3 database. Therefore, L3 
database with the sectoral consistent intensity assumption can basically 
reflect the real emission, factor contribution and key path information. 

There are still some limitations in this study that need to be 
addressed in future research. Except for the sectoral expansion by 
adopting consistent intensity assumption, there are still other methods 
to expand sectors to get the missing sectoral carbon intensity data, 
selecting suitable method which is closer to the actual sectoral emission 

situation will better reduce the impact of the sector aggregation effect. 
In addition, a more detailed sector level is not included in this study due 
to the sector fineness limit of the input-output tables, considering some 
input-output tables containing more sectors and adopt more accurate 
trade matrix estimation method can be analyzed in the future. 

6. Conclusion 

Based on the city-centric global multi-region input-output (CCG- 
MRIO) model, this paper has studied the sector aggregation effect on the 
residential embodied carbon emission of Beijing and Shanghai. From the 
view of simplifying the data calculation, the 8-sector level can obtain the 
almost same sectoral and regional embodied emission contribution re-
sults, as well as the path results, so it is appropriate to only locate some 
high aggregate sectors, key regions, or key emission paths with high 
embodied emissions. Although expanding the sector in an assumed way 
will lead to deviations in sectoral and regional emission results, the 
positioning of key sectors and regions is basically accurate, so it is also 
appropriate to use the intensity assumption to decompose some highly 
aggregated sectors in consideration of the need to obtain more infor-
mation on sectoral emission contributions. However, there are direc-
tional changes in factor contributions at the sector level with higher 
aggregation or sectoral expansion, especially in the input-output struc-
ture factor. Therefore, the most detailed sectoral with real data is 
preferred in factor analysis to ensure accuracy. Adopting a consistent 
intensity assumption to expand sectors is prefered in path analysis for it 
ensure the accuracy of critical paths and provides some extra path 
information. 

The results of this study provide a reference for the sector aggrega-
tion level selected in similar studies in the future. The result has the same 
reference value for other final consumptions that only the calculation 
matrix is replaced. The changes in input-output structure, regional 
emission contributions, and some path omission should be paid atten-
tion at different sectoral levels. It is suggested that the appropriate 
assumption and the level of sector aggregation should be selected on the 
basis of meeting specific research needs. The consistent assumptions 
studied in this paper provide guidance for obtaining more detailed 
characteristics of sectoral emissions with simple data process works, 
especially for high-aggregated industries such as service industries, 
whose sub-sector emission data are usually challenging to obtain. 
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