

"KEY ELEMENTS FOR A SUSTAINABLE WORLD: ENERGY, WATER AND CLIMATE CHANGE"

Solutions for Energy Savings & Environmental Compliance Leading to Cleaner & Lower Cost Production

Arun J. Basu

JNE Consulting Ltd. Hamilton, ON, Canada e-mail: abasu@jne.ca Vivek B. Dutta

JNE Group -Energy and Environment Cupertino, CA, USA e-mail: vdutta@jne.ca

Presentation Outline

- Background (Rationale for this work)
- Current Industry Scenario & Key Issue
- Engineering solutions
- Industry in Focus & Applications
- Methodology with Examples (Case Studies)
- Typical Results & Benefit
- Concluding Remarks

Cleaner Production in terms of Sustainable Development Framework

POSITIVE Proof of Global Warning

Engineering Solutions for Tomorrow's Problems

Current Industry Scenario

Energy Initiatives

Conflicting Issues in Heavy Industry

- "Conventional Dirty Manufacturing" is linked with
 - Old Technology
 - ▶ Inefficient (i.e. higher) Energy usage
 - Poor Environment & Health conditions
- Developed countries have already accumulated wealth using conventional practice
- Global Competition & Quick ROI are discouraging Corporations to go environmentally friendly

Industry Challenges

Energy Conservation and Operational Efficiency

"Higher Productivity while consuming lesser energy"

Health and Safety - Noise Pollution

"Restraining existing power and process plants"

Environmental Compliance

"Plant modernization with constraint capital budget"

Smart Energy Management

Engineering Solution

Energy Savings:

- Identify areas with air as process media for immediate application
- Lowering system resistance of the plant draft (air / flue gas) systems including flow through pollution prevention equipment
 - Primarily forced draft and induced draft fan systems
 - ESPs, Baghouses, Scrubbers

Improve Environment & Health:

Noise and Vibration reduction (airflow induced)

Energy Savings Approach

- Noise and Vibration are indications of turbulent airflow and wasted energy.
- Uses "aero-acoustics" optimization techniques while integrating aerodynamics with fluid mechanics to manage air flow and minimize turbulence.
- Experience & knowledge in the area of air/gas flow behavior, fan operations & discharge profiles are used to retrofit & upgrade Legacy Programs, resulting in smoother flow.
- End result is reduced energy consumption, noise attenuation and minimize vibration in manufacturing environment, while maintaining similar productivity.

Energy Savings & Cleaner Production

- Savings in kWh is obtained by
 - Optimization and lowering system resistance of a fan or pump system (industrial operations), where process media is air or flue gases
 - Focusing on energy savings and noise attenuation in fan systems, handling air (fresh or exhaust) and flue gas
 - Energy savings (e.g., consumption of less fuel) through process optimization is beyond the scope of this paper

Energy Guzzling Industries Served

Energy Efficient Industry.....A global challenge

Application Areas

Industrial Operations with air as process media and flue gas cleaning

- Power Plants (FD and ID fan systems including ESPs, Bag Houses, FGDs)
- Steel Plants (Primarily ID fan systems including ESPs and Bag Houses, captive power plants)
- Refineries (cooling tower fan systems, captive power plant)

Application Areas (....continued)

Infrastructure related (Health and Safety) is of primary interest, e.g., airflow requirement is governed by

- keeping methane level diluted enough to have no explosions in gassy mines, and
- keeping diesel emission diluted for safe working in metal mines and tunnel construction (100 cfm per bhp)
- Mine ventilation (intake and exhaust fan systems on surface and auxiliary fans underground)
- Tunnel ventilation (during development and also permanent ventilation)

Power Plants

Steel Plants

Basic Oxygen Furnace

(A key area for energy conservation)

Typical area of improvement in airflow conditions

Impact on CO₂ emission

Savings in kWh

Reduction in CO₂ emission

STEEL INDUSTRY Energy & Eqv. CO₂ Factors

		CO2 Factor
Boiler or Steam Coal	25 million BTU/ton	5,130 Ib/ton
Coking or BF Injection Coal	27 million BTU/ton	5,540 Ib/ton
Coke	26 million BTU/ton	6,580 lb/ton
EAF Charge or Injected Carbon	26 million BTU/ton	5,540 lb/ton
No. 6 Fuel Oil	150,000 BTU/gal	26 lb/gal
Distillate/Diesel Oil	140,000 BTU/gal	22 Pb/gal
Gasoline	124,000 BTU/gal	19 lb/gal
Light Oil	140,000 BTU/gal	26 lb/gal
Tar	160,000 BTU/gal	35 lb/gal
Liquefied Petroleum Gas	90,000 BTU/gal	12 lb/gal
Natural Gas	1,000 BTU/cu ft	0.12 lb/cu ft
Blast Furnace Gas	90 BTU/cu ft	0.044 lb/cu ft
Coke Oven Gas	500 BTU/cu ft	0.048 lb/cu
Steam (coal basis)	1,000 BTU/Ib	0.06 Ib/Ib
Electricity (U.S. grid basis)	3,413 BTU/kwh	1.4 lb/kwh
Limestone (12% C)		880 lb/ton
Raw Dolomite (12.8% C)	***	940 Ib/ton
Carbon Electrodes (99% C)		7,260 Ib/ton
Pig Iron (4% C)		290 lb/ton
DRI or HBI (2% C)	***	145 lb/ton
Iron Carbide (6.5% C)	***	480 lb/ton
Carbon Steel (0.04% C)		0.0015 lb/ton

3,413 BTU/kwh

1.4 lb/kwh

ELECTRICITY

CO₂ emission

(U.S. grid basis)

Energy Source Energy Value CO2 Factor

104 million BTU/ton

22.79 lb/ton

90 BTU/cu ft

0.044 lb/cu ft

Examples:

Airflow Improvement for Energy Savings and Noise & Vibration Reduction

Duct Optimization and Fan Inlet & Outlet
Condition Modification

Plant Draft System Components: Fans

- Primary Air mover for combustion and exhaust of flue gas through a series of pollution prevention equipment
- Types Axial and Centrifugal
- Usage
 - Force Draft (FD) to push air or gases
 - ▶ Induced Draft (ID) to extract the gaseous products
 - Primary Air (PA) to mix air + solid particles

Design and engineering for reducing air/gas flow resistances, allowing either more air/gas handing capacity (increased generation) or reducing energy loss through the system

Fan Performance

Fan performance enhancement improves performance of all key PP equipment (e.g., SCR, FGD, and ESP) including boiler and stack efficiencies

Example: Axial FanFan (inlet) – Duct – Silencer Interaction

Before After

Example: ID Fan and duct optimization

(Fan outlet to ESP Inlet)

BEFORE

Base Case model showing nonuniform airflow and flow separation

AFTER

Recommended Solution showing airflow with less turbulence and more uniform velocity distribution

Examples: Duct optimization

Typical Estimated Benefits of Applying CFD Simulated Engineering Optimization

- ❖ Performance Improvement of the Pollution & emission control Equipment.....10+%
 - Clean Environment with Carbon Credit
- Noise control Reduction.....30+ dBA
- Fan systems Energy efficiency......25%
- Increase power & process units combustibility......3+%
- Operational & maintenance Improvements:
 - Higher productivity Lower wear & tear
- Carbon Credit

Concluding Remarks

- Energy efficient manufacturing has been achieved in existing heavy industry, leading to "cleaner production".
- Use of aerodynamics with fluid mechanics to optimization and manage air flow, while minimizing turbulence has been demonstrated as successfully engineering solutions.
- CFD simulation is used as diagnostic tool for smart design and energy conservation.
- Besides the ongoing efforts with alternate energy, smart management of conventional energy could further contribute to eco-friendly world.