PROMOTING CLEANER PRODUCTION THROUGH INNOVATIVE UNIVERSITY RESEARCH METHODS

Bhaskar Kura, Ph.D., P E
Professor of Civil & Environmental Engineering
University of New Orleans, New Orleans, USA
bkura@uno.edu

Sao Paulo, May 22, 2009

Outline

- Introduction
- UNO's Approach to Promote Cleaner Production
- UNO's Research Methodology Abrasive Blasting Case Study
- Preliminary Results
- Summary and Conclusions

Introduction

- UNO's Location
- Gulf Coast and the Shipbuilding and Ship Repair Sector
- UNO's Departments and Centers
 - SNAME
 - Department of Civil & Environmental Engineering
 - GCRMTC / MERIC
- Synergy for Cleaner Production Research

UNO's Approach to Promote Cleaner Production

- Understanding shipbuilding and ship repair processes
 - Integrated Environmental Management Plan for SF (Broad based research)
 - Specific projects to address more focused issues
- Major processes
 - Surface preparation
 - Metal cutting
 - Painting
 - Welding
 - Assembly

UNO's Approach to Promote Cleaner Production

- Need for simulating shipyard processes on UNO's research site to monitor:
 - Process conditions
 - Multimedia environmental performance
 - Product quality
 - Energy consumption
 - Productivity or efficiency
- Need for Emissions Test Facility (ETF)
- Need for Weld Fume Chamber

- Dry Abrasive Blasting
 - Abrasive materials are propelled against a surface with the aid of compressed air
 - Used to
 - remove surface contamination (rust, paint, oil/grease)
 - create anchor pattern (rough profile) for coating to improve its performance
- Waste Streams
 - Air Emissions
 - Spent Abrasive
- Air Emissions Include
 - Abrasive material: upon bombarding with base plate, abrasive material breaks down into smaller particles
 - Contaminants removed such as paint, rust and others
 - Base metal eroded due to abrasion
 - Metals such as As, Cd, Cr, Cr⁺⁶, Pb, Mn, Ni, Ti, and others which may be toxic

- Air emissions from dry abrasive blasting are influenced by
 - Abrasive type
 - Abrasive particle size gradation (medium, coarse, fine)
 - Surface contamination type and level
 - Blast pressure
 - Abrasive feed rate
 - Blast nozzle size
 - Angle of abrasive jet stream to the surface being cleaned
 - Wind velocity (in case of outdoor blasting)
 - Exhaust fan capacity and room size (in case of indoor blasting)
 - Worker training.

- Emission Factors (EF): amount pollutant emitted per unit output work done or amount of pollutant emitted per unit mass of raw material consumed
- EFs are used in
 - Estimating emissions
 - Environmental compliance
 - Determining impact on ambient air quality
 - Making environmentally preferable purchases
 - Design and selection of best management processes
 - Health risk impact assessments
- EFs by USEPA, NSRP, and State Agencies
 - Very general, limited, discontinuous and incomplete
 - Diverse test conditions
 - Procedures not standardized

- Shipbuilding survey to understand most commonly used abrasive
- Six abrasives were tested at the UNO emissions test facility for emission factors, consumption, and productivity:
 - Coal Slag (mixture of metallic oxides)
 - Garnet (ferrous, magnesium, aluminum silicate complex)
 - Copper Slag (metallic abrasive containing a mixture of copper and metallic oxides)
 - Bar shot (metallic abrasive, also called hematite, primarily containing ferrous oxide)
 - Steel Grit (metallic abrasive with iron as the primary constituent and trace quantities of metallic and non-metallic oxides)
 - Sand / Specialty Sand

Exhaust Duct

- An average exhaust velocity of 3500 4000 fpm was maintained comply with the recommended transport velocities for abrasive particles
- An exhaust fan with a maximum capacity of 5000 cfm was used to vent emissions from the test chamber
- Designed to comply with the EPA guidelines for source testing
 - Diameter of duct: 12 inches
 - Location of sampling port: 8 diameters (downstream) from the air intake (flow disturbance) and was positioned at 2 diameters upstream from the variable speed fan (flow disturbance)

Abrasive Blasting

 A measured amount of abrasive material was added to blast pot and blasting was carried out until the blast pot was empty

Stack Sampling Equipment

- Designed as per EPA Methods 1- 5
- Sampling train was used to draw samples from exhaust duct
- EPA Method 4 was used to measure stack gas velocity and volumetric flow rate
- Particles were collected on a filter paper
- Moisture was collected using a series of 4 glass impingers to determine moisture content

Particle Collection

- Two-stage particle collection system placed at downstream of exhaust fan
 - The first stage collected the coarse particles by changing the direction of the gas flow
 - The second stage collected fine particles by using a fabric filter
- Particle samples were collected upstream of exhaust fan
- Emission factors represent "uncontrolled" emission factors

Variable Parameters

- Abrasive Material: 6 abrasives
- □ *Blast Pressure*: 80 PSI, 100 PSI, and 120 PSI
- *Feed Rate:* 3, 4, and 5 turns of opening of Schmidt feed valve
- Initial Surface Conditions: Flash rust and paint

Constant Parameters

- Abrasive Grade: Medium grade
- Blast Nozzle: Bazooka No.6 nozzle with 9.5 mm diameter (venturi nozzle)
- □ *Angle of Deflection*: 90⁰ (Nozzle held perpendicular to surface)
- Stand-off Distance: 12" was maintained between the test plate and the blast nozzle
- Exhaust Flow Rate: 3000 cfm (average volumetric flow rate)
- Surface Finish: Near-white finish (SP-10)
- 27 runs for each material and each surface type (3 pressures X 3 feed rates X 3 runs)

- Area Cleaned: The blasted area was measured using a measuring tape
- Blasting Time: The total blasting time was measured for each run using a stop watch
- Productivity: Area Cleaned (m²) / Total Blasting Time (hr)
- □ Consumption: Quantity of Abrasive Used (kg) / Area Cleaned (m²)
- Emission Factors: Emission factors for various tests were computed as follows:

```
Mass of pollutant emitted (g) / Area Cleaned (m²)
```

Mass of pollutant emitted (g) / Quantity of abrasive used (kg)

Mass of pollutant emitted (kg) / Quantity of abrasive used (kg)

Mass of pollutant emitted (kg) / Quantity of abrasive used (ton)

Preliminary Results

Productivity:

$$Y = a + (b/P) + (c/F) + (d/P^2) + (e/F^2) + f/(P*F)$$

Abrasive Consumption:

$$Z = a + (b/P) + (c/F) + (d/P^{2}) + (e/F^{2}) + f/(P*F)$$

■ Emission Factors:

$$EF = a + (b * P) + (c * F) + (d * P^{2}) + (e * F^{2}) + (f * P * F)$$

Where:

Y = productivity in m²/hr,

Z = abrasive consumption in kg/m2

EF = emission factor in g/m2 or g/kg,

P = blast pressure (PSI), applicable range: 80 - 120 PSI,

F = feed rate, applicable range: 3 - 5 turns of Schmidt valve, and

a, b, c, d, e, and f are coefficients that depend on type of abrasive used

Summary and Conclusions

- UNO's approach promotes:
 - Cleaner production
 - Resource conservation (energy and materials)
 - Cost optimization
 - Improved productivity
- Similar approach is being used for other maritime processes
- Concepts are scalable to other industry sectors and other production processes