Evaluation of the Electrodialysis Process in the Treatment of Phosphate Containing Solution

ROTTA, E. H. a,*, BITENCOURT, C. S. a, MARDER, L. a, BERNARDES, A. M. a

a. LACOR, PPGE3M, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul

* Corresponding author, eh.routta@gmail.com
1. Introduction

- Phosphorus (P) is an essential nutrient for all life forms;
- Demand of food and commodities industry \rightarrow phosphate rock
 - One of the 20 critical raw materials1;
- Excessive P loads inserted on natural water bodies:
 - Eutrophication2;

1. Introduction

• Different processes were proposed to the recovery and concentration of P:
 – Biochar adsorption\(^2\);
 – Crystallization\(^3\);
 – Precipitation\(^4\) and;
 – Membrane-based process\(^5\)
 • Electrodialysis\(^6\);

1. Introduction

• Different processes were proposed to the recovery and concentration of P:
 – Biochar adsorption\(^2\);
 – Crystallization\(^3\);
 – Precipitation\(^4\) and;
 – Membrane-based process\(^5\)
 • Electrodialysis\(^6\);

1. Introduction

- Different processes were proposed to the recovery and concentration of P:
 - Biochar adsorption\(^2\);
 - Crystallization\(^3\);
 - Precipitation\(^4\) and;
 - Membrane-based process\(^5\)
 - **Electrodialysis\(^6\)**;

1. Introduction

- P recovery from sewage sludge ash (SSA):
 - SSA \rightarrow by-product of dewatered sewage sludge combustion in an incinerator\(^7,8\);

1. Introduction

- P recovery from sewage sludge ash (SSA):
 - SSA → by-product of dewatered sewage sludge combustion in an incinerator\(^7,8\);

- The objective of this work was to test the technical feasibility of a 5-compartment ED cell in the treatment of a phosphate containing solution aiming the recovery of P from municipal wastewater;

2. Materials and Methods

2.1. Solutions

- Phosphate containing solution:

<table>
<thead>
<tr>
<th>Salts</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH$_2$PO$_4$·H$_2$O</td>
<td>0.33 g L$^{-1}$</td>
</tr>
<tr>
<td>Na$_2$HPO$_4$·7H$_2$O</td>
<td>0.65 g L$^{-1}$</td>
</tr>
</tbody>
</table>

- Electrolytic solution:

<table>
<thead>
<tr>
<th>Salt</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$SO$_4$</td>
<td>4 g L$^{-1}$</td>
</tr>
</tbody>
</table>
2. Materials and Methods

2.2. Electrodialysis Cell

- Membranes:
 - CEM: HDX100;
 - AEM: HDX200;
 - Supplied by Hidrodex®;
 - 16 cm²;

- Electrodes:
 - Ti/70TiO₂30RuO₂;
 - 16 cm²
2. Materials and Methods

2.3. Determination of the limiting current density

- Current-Voltage Curves (CVC) method9;
- 2 mA each 30 seconds;
- Duplicate.

2. Materials and Methods

2.3. Determination of the limiting current density

- Current-Voltage Curves (CVC) method9;
- 2 mA each 30 seconds;
- Duplicate.

2. Materials and Methods

2.4. Electrodialysis experiments

- ED tests were carried out in triplicate;
- Room temperature;
- Conductivity, pH and cell potential were monitored;
- Solution aliquots were collected at pre-established time and submitted to ion chromatography analysis;
 - Study of the ions transfer;
 - Efficiency of the ED process to remove and recover phosphate;

\[
pe\% = \frac{(C_i - C_t)}{C_i} \times 100
\]
3. Results and Discussions

3.1. Limiting current density

- HDX100:
 - one plateau
 - one i_{lim}
 - typical behavior10;

\begin{itemize}
\end{itemize}
3. Results and Discussions

3.1. Limiting current density

- **HDX100:**
 - one plateau
 - one i_{lim}
 - typical behavior10;

- **HDX200:**
 - two plateaus
 - two i_{lim}
 - differs from the conventional;

3. Results and Discussions

3.1. Limiting current density

Presence of two plateaus11

Different phosphorus-containing species12

pH conditions

3. Results and Discussions

3.2. Evaluation of Electrodialysis

- 0.53 mA cm$^{-2}$;
 - 75% of $i_{\text{lim,AEM}}^{13}$;
- 15 hours;
 - 200 µS cm$^{-1}$ (water supply);

3. Results and Discussions

3.2. Evaluation of Electrodialysis

- Conductivity

![Electrodialysis Diagram]

Graph:
- Conductivity (mS cm⁻¹) vs. Time (h)
- Concentrated anode
- Diluted
- Concentrated cathode
- Electrodes
3. Results and Discussions

3.2. Evaluation of Electrodialysis

- pH

Water Dissociation

<table>
<thead>
<tr>
<th>OH⁻</th>
<th>H⁺</th>
</tr>
</thead>
</table>

Pass through the AEM

Shifts the equilibrium to the formation of H_3PO_4

pH in the diluted compartment

![Graph showing pH over time with different compartments and electrodes]
3. Results and Discussions

3.2. Evaluation of Electrodialysis

- Cell voltage

- Removal of the number of ions available in D compartment
- Solution electrical resistance increases
- pH of central compartment decreases
- Formation of H_3PO_4
3. Results and Discussions

3.2. Evaluation of Electrodialysis

<table>
<thead>
<tr>
<th>Ionic specie</th>
<th>Percent Extraction (pe%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate-containing species</td>
<td>(60.82 ± 6.48) %</td>
</tr>
<tr>
<td>(\text{H}_x\text{PO}_4^{x-3})</td>
<td></td>
</tr>
<tr>
<td>Sodium ((\text{Na}^+))</td>
<td>(92.21 ± 1.21) %</td>
</tr>
</tbody>
</table>

- While the pe\% for \(\text{Na}^+ \) is over than 92\%, phosphate-containing species reported a lower value, around 61\%, possibly due to \(\text{H}_3\text{PO}_4 \) availability;
4. Conclusions

- CVCs showed an unusual behavior for the AEM (HDX200);

 - Changes on pH conditions in D compartment
 - Formation of H_3PO_4
 - pe% of P-containing species was restricted

- Further experiments should be done to try to achieve higher phosphate species recovery;
 - Controlling the solution pH;
 - operating in a continuous way or;
 - changing successively the solution in the diluted compartment.
Acknowledgements