

Innovation in cleaner production through waste recycling assessment and optimisation

Mohamed OSMANI

Associate Professor in Architecture and Sustainable Construction Loughborough University, United Kingdom

Overview

Overview 1. 1 Background 2. Protect 2. Context DEEWA 3 Methodologiy Validation 3. 5 Recycling **Optimisation** Recycling Programme

4.

Loughborough

University

- Background
- Project context: Built Environment Action on Waste Awareness and Resource Efficiency (BEAWARE)
 - Performance, Economic and Environmental Recycling Assessment (PEERA) Methodology
- PEERA Validation
- 5. Recycling optimisation testing programme

Brazil - Sao Paulo-SP

2011 May 18-20

Loughborough
 University

Background

Methodology

Project

Context

DEEWA

Validation

Recycling

Optimisation Recycling

Programme

1.

2.

3

4

5.

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

1. Background

Annual waste arisings by sector in the UK

1. Background: waste streams

Brazil - Sao Paulo-SP

RWALB

2011, May 18-20

Loughborough University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

2. Project Context

- 1. Background
- 2. Project Context
- 3. PEEWA Methodology
- I. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

Built Environment Action on Waste Awareness and Resource Efficiency (BEAWARE)

Brazil - Sao Paulo-SP

2011, May 18-20

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

2. Project Context

2. Project Context

1.

3

Backeroune

Loughborough

University

```
PEEWA
Methodology
```

- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme
- Founding body: Technology Strategy Board (TSB), Department for Business, Innovation & Skills UK
- Project value: £1.7 million
- Duration: 30 months
- Consortium: 14 industrial partners and 2 research institutions: Loughborough University & Building Research Establishment (BRE)

Brazil - Sao Paulo-SP

2011 May 18-20

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

2. Project Context

Loughborough

Background

Methodology

Project. Context

PEEWA

PEEWA Valioation

Recycling

Recycling Programme

Optimisation

University

1

2.

3.

5

INTERNATIONAL WORKSHOP ADVANCES IN CLEANER PRODUCTION

Brazil - Sao Paulo-SP

2011 May 18-2

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

3. Performance, Economic & Environmental Recycling Assessment (PEERA) Methodology

- M1. Waste targeting
- M2. Waste composition and hazards
- M3. Waste prioritising
- M4. Waste sources, quantities and value
- M5. Waste costs and current recycling status
- M6. Re-use/recycling limiting factors
- M7. Addressing the limiting factors
- M8. Re-use/recycling options
- M9. Re-use/recycling requirements

M10. Re-use/recycling costs and market value Osmani M. Innovation in Cleaner Production through Concrete and Cement Composite Recycling

	2011 May 18-20 INTERNATIONAL WORKSHOP ADVANCES IN CLEANER PRODUCTION Brazil - Sao Paulo-SP
Loughborough University	"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"
	3. PEERA Methodology Stage 1
. Background	
. Project	Waste Targeting
Context	Sector/process
B. PEEWA	
Methodology	O Manufacture
. PEEWA	
Validation	Distribution
. Recycling	
Optimisation Recycling	O Point of use
Programme	
	O End of life

Loughborough University

1.

2.

3.

4

5.

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

2011 May 18-20

Brazil - Sao Paulo-SP

3. PEERA Methodology Stage 2

			INTERNATION ADVANCES IN CLEA	AL WORKSHOP NER PRODUCTION	2011 M
Unix	ghborough rersity	B. PEERA	Aethodolo	gy Stage 3	INABLE WOI
1. Bac 2. Pro Coi	ckground nject ntext	Waste Prioritisi Waste material	ing Re-use/recycling Drivers	Re-use/recycling Barriers	Ranking
3. PEI Met	EWA thodology				
4. PEI Val	EWA idation				
5. Rec Opt Rec	cycling timisation cycling				
110	grannie				

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

3. PEERA Methodology Stage 4a

1.	Background	W	Waste descriptions and causes					
2.	Project Context		Waste material "Wet waste" 〇	"Dry waste"				
3.	PEEWA Methodology		De	scriptions	Causes	Rank (quantity)		
4.	PEEWA Validation	\circ	Manufacture					
5.	Recycling Optimisation	0	Distribution					
	Recycling Programme	0	Storage					
		0	Point of use					
		0	End of life					

University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

3. PEERA Methodology Stage 5a

1.	Background	Cost of	waste disposal	and recovery		
2.	Project Context	Was	ste material			
3.	PEEWA Methodology	Disposa % total co	COST st Collection/handl	ing Transport	Landfill tax	
4	PEEWA		Rating *	Rating *	Rating *	
	Validation		%	%	%	
5.	Recycling		£/tonne	£/tonne	£/tonne	
	Recycling	Recover	y cost			
	Programme	% total co	st Collection/handl	ing Transport	Reprocessing	
			Rating *	Rating *	Rating *	
			%	%	%	
			£/tonne	£/tonne	£/tonne	
		* High (must b	e reduced immediately), med	lium, low (minor costs)		

Loughborough
 University

INTERNATIONAL WORKSHOP

Brazil - Sao Paulo-SP

2011, May 18-20

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

3. PEERA Methodology Stage 5b

1.	Background	Current waste status and destinations
2.	Project	Waste material
	Context	Quantity sent to landfill Reasons
3.	PEEWA	% total Recycling potential Characteristics
	Methodology	Potential applications
4.	PEEWA	Landfill locations
	Validation	Quantity being recovered
5.	Recycling Optimisation Recycling Programme	% on-site % re-used % off-site % off-site Destinations
		% total % on-site % recycled Applications % off-site Destinations

3. PEERA Methodology Stage 6

- f .--- Background
- 2. Project Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

Re-use	recycling limiting factors					
Waste ma	aterial					
	Description	Rating	*			
Limiting factor		O Low	O Medium	0	Critical	
Limiting factor		O Low	O Medium	0	Critical	
Limiting factor		O Low	O Medium	0	Critical	
Limiting factor		O Low	O Medium	0	Critical	
Limiting factor		O Low	O Medium	0	Critical	
Limiting factor		O Low	O Medium	0	Critical	
* Low = tolerable; Medium = restricts re-use or recycling; Critical = prevents re-use or recycling						

Brazil - Sao Paulo-SP

2011, May 18-20

Loughborough University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

3. PEERA Methodology Stage 7

- 1. Background
- 2. Project Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

Addressing the limiting factors Waste material Timeframe Category Limiting factor Recommendation Env O ST МΤ LT () () ()() \bigcirc () () () () \bigcirc (E) = economic; (T) = technical; (Env)= environmental; (O) = other (ST) = short-term; (MT) = medium-term; (LT) = long-term

Brazil - Sao Paulo-SP

2011 May 18-20

Loughborough University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

3. PEERA Methodology Stage 8

- 1. Background
- 2.....Project Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

Re-use/recycling opportunities				
Waste mat	erial			
Rouso	Deteile	Sector	Environmental impact	
110-030	Details	OS SS CS	Increase Neutral Decreas	e
Current route		$ \bigcirc \bigcirc \bigcirc$		
Alternative route 1				
Alternative route 2				
Recycling	Details	Sector	Environmental impact	
		OP SS CS	Increase Neutral Decreas	e
Current route		OP SS CS	Increase Neutral Decreas	e
Current route Alternative route 1		OP SS CS 〇 〇 〇 〇 〇 〇 〇 〇	Increase Neutral Decrease Image: Strate Str	e
Current route Alternative route 1 Alternative route 2		OP SS CS 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇	IncreaseNeutralDecreaseImage: Constraint of the sector of the	e
Current route Alternative route 1 Alternative route 2 (OS) = material recove (CS) = material recove	red on-site; (SS) = material reco	OP SS CS Image: Constraint of the symbol of the	IncreaseNeutralDecreaseImage: Sector;Image: Sector;Image: Sector;Image: Sector;	e

Loughborough
 University

INTERNATIONAL WORKSHOP

Brazil - Sao Paulo-SP

2011, May 18-20

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

3. PEERA Methodology Stage 9

1.	Background	Re-use/re	cycling requiremer	nts			
2.	Project Context	Waste mate	erial	Re-use/ recycling rout	e		
3.	PEEWA Methodology	Description	of re-use/recycling pro	cesses]
4.	PEEWA Validation	Essential ma	aterial properties			Attain	able
5.	Recycling Optimisation	Physical				Yes	No
	Recycling Programme	Chemical				Yes	No
		Other				Yes	No

Loughborough

Baekeround

Methodology

Project Context

PEEWA

PEEWA Validation

Recycling

Recycling Programme

Optimisation

1.

2

3.

-6

University

INTERNATIONAL WORKSHOP ADVANCES IN CLEANER PRODUCTION

Brazil - Sao Paulo-SP

2011, May 18-20

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

3. PEERA Methodology Stage 10: Recycling costs and market value

- Capital costs: land, facility, machinery, etc.
- Operational costs: labour, running costs, etc.
- Payback period
- Markets
 - Prices: recycled products vs equivalent non-recycled materials
 - Price variations

Brazil - Sao Paulo-SP

2011, May 18-20

Loughborough University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

4. PEERA Validation: Waste Targeting & Prioritising

Recycling Potential Ranking	Cluster 1 PLASTICS	Cluster 2 WOOD / TIMBER	Cluster 3 BRICKS & BLOCKS	Cluster 4 CEMENT & CONCRTE	Cluster 5 'catch all' MANUFACTURING	Cluster 6 – A 'catch all' CONSULTANT S	Cluster 6 – B 'catch all' CONSULTANTS
1	GRP (Glass- reinforced plastic)	Saw dust chips	Spoilt products on site	Unsaleable. product	Timber (paokaging)	Packaging	packaging (pallets, shrink wrap, bubble wrap, boxes, polystyrene, plastic containers (contaminated), aerosols, plastic/metal wrapping bands, skids, condex sheets.
2	PVC (Polyvinyl Chloride)	Wood panel off cuts	Demoltion wastes	Packaging waste	Glass	Subsoil extraction Spoil (1)	Compostes (matenals mixed together, materials joined -laminated, product composed of > 1 material) Polymer composites (cladding, door, decking, rooflights & rooftiles, strengthening plates) Laminated composites (worksurfaces, furniture, doors, SIPS, rome)
3	PE (Polyethylene)	Metal (packaging, incl containers/tin s)	Scrubber / exhaust wastes	Factory waste (PPE, kitchen waste, oily waste, fabric waste etc)	Stone washing fines	Timber (Treated)	Plasterboard
4	PU (polyurethane)	OVESP Sludge	Packaging	Expired cement	Plastic (packaging)	Plasterboard	Plastics (plastic pipes: Window frames, doors, soffits & fascias, ducting – conduit, porfights, flooring, temporary materials: plastic covering for floors)
5	PES (Polyether sulphone)/ XPS	Plastic waste	Unusable products (factory)	Bypass dust	Plasterboard	Subsoil extraction Spoil (2)	Glass (windows)
6	EPDM (Ethylene Propylene Diene Monomer)	Treated wood			Insulation	Timber (untreated)	
7	PET (Polyethylene Terephthalate)				Airfiterfines	Hard Core	
8	PP (Polypropylene)				MDF		
9	Rubber				Steel		

- 1. Background
- 2. Project Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

Brazil - Sao Paulo-SP

2011 May 18-20

Loughborough
 University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

4. PEERA Validation: Waste Mapping (data collection)

Brazil - Sao Paulo-SP

2011 May 18-20

Loughborough University

Background

1.

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

4. PEERA Validation: Waste Mapping (data results)

2.	Project	PLASTICS	WOOD / TIMBER	BRICKS & BLOCKS	CEMENT & CONCRTE	INSULATION
3.	Context PEEWA Methodology	GRP (Glass- reinforced plastic)	Saw dust chips off cuts	Demolition wastes: Concrete bricks	<u>Unsaleable</u> product	Trimmings from insulation
4 . 5.	PEEWA Validation Recycling	PVC roofing	Wood panel off cuts 🔁	Demolition wastes: Clay bricks	Damaged concrete flooring	Plasterboard off- cuts
	Recycling Programme	PVC profile	WESP	Scrubber / exhaust wastes	Intermediate bulk containers (factory waste)	
		Polyethylene (PE) packaging		Damaged clay bricks (factory waste)	Cement kiln dust	
					Reject pre-cast concrete units	

Brazil - Sao Paulo-SP

2011, May 18-

Loughborough
 University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

4. PEERA Validation (data collection)

1. Background

- 2. Project Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

A. Material Performance Assessment

- Composition
- Required properties and material for re-use and/or recycling
- Alternative re-use or recycling methods (if any)

B. Economic Assessment

- Capital and operational costs for re-use and/or recycling
- Pay-back period for recycling or re-use investment
- Environmental regulations
- Market value of re-used and/or recycled material, and comparison with the market value of equivalent primary standard products

Brazil - Sao Paulo-SP

2011, May 18-20

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

4. PEERA Validation (material performance & economic assessment results)

PLASTICS	WOOD / TIMBER	BRICKS & BLOCKS	CEMENT & CONCRTE	INSULATION
GRP (Glass- reinforced plastic)	Wood panel off-cuts	Concrete blocks from demolition	Damaged concrete flooring	Trimmings from insulation
PVC profile		Clay bricks from demolition	Reject pre-cast concrete units	Plasterboard off- cuts
		Damaged clay bricks (factory)		

Osmani M. Innovation in Cleaner Production through Concrete and Cement Composite Recycling

1. Background

Loughborough University

- 2. Project Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

Loughborough

Background

Methodology

•

Project Context

DEEWA

PEEWA

Validation

Recycling

Optimisation Recycling

Programme

1

2.

8

4

5.

University

INTERNATIONAL WORKSHOP ADVANCES IN CLEANER PRODUCTION

Brazil - Sao Paulo-SP

2011, May 18-20

'CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD'

4. PEERA Validation

- Selection criteria of resulting waste materials through the validation of PEWA methodology:
- chemically stable & occur in sufficient abundance;
 - sorted at source & high landfilling rate;
- do not incur excessive collection; transportation and processing costs;
- can be easily linked with markets for the recycled products; and
- produce results within the BEAWARE project timeframe

Selected waste: Glass Reinforced Plastic (GRP)

Brazil - Sao Paulo-SP

2011, May 18-20

Loughborough
 University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

5. GRP Recycling Testing Programme

GRP waste processing

Sieving GRP waste

Fibre content < 5%

- Background
 Project
- Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

Brazil - Sao Paulo-SP

2011 May 18-2

Loughborough University

Background

Methodology

Project

Context

Vendenion

Recycling

Optimisation Recycling

Programme

1.

2

3

5.

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

5. GRP Recycling Testing Programme

GRP waste characterisation

Physical Characterisation

- 1. Particle size analysis and
 - particle distribution profile
- 2. Morphological studies

Chemical Characterisation

- Glass transition temperature 1.
- 2. Thermal properties
- 3. Elemental composition
- 4. Chemical composition and polymer types

Brazil - Sao Paulo-SP

2011, May 18-20

Loughborough
 University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

5. GRP Recycling Testing Programme

- 1. Background
- 2. Project Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

GRP-waste filled rubber composites

Rubber sample for hardness test Prototype: Anti-vibration pad using 50 % GRP powder

Other application:

- Carpet underlay
- Bearing pads
- Paving drainage pads
- Bridge & concrete expansion joints
- Rubber water stops

Brazil - Sao Paulo-SP

2011 May 18-20

Loughborough University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

5. GRP Recycling Testing Programme

- 1. Background
- 2. Project Context
- 3. PEEWA Methodology
- 4. PEEWA Validation
- 5. Recycling Optimisation Recycling Programme

GRP waste filled concrete & cement composites

190 GRP waste powder filled concrete composite specimens

GRP waste fibre filled cement composites Produced panels: (30x30 cm) 8 &12 mm thick

Brazil - Sao Paulo-SP

2011, May 18-20

Loughborough University

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

5. GRP Recycling Testing Programme

1. Background

2. Project Context

3. PEEWA Methodology

I. PEEWA Validation

5. Recycling Optimisation Recycling Programme

Applications: GRP waste filled concrete & cement composites

- Architectural cladding panels
- Precast paving slabs
- Roof tiles
- Precast wall elements
- Light weight concrete
- Concrete blocks

Full compliance tests such as durability and fire properties for specific applications are recommended.

Acknowledgement

- The Technology Strategy Board (UK) for funding this research
- The BEAWARE project partners and their members for their cooperation
- Hambleside Danelaw Rooflights and Cladding Limited (Scotland) for supplying GRP waste samples

Thank you Any Questions?