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A Problem - Us

All studies clearly identify human activity as a primary cause of the Earth
System Crisis

The 20" Century has seen exponential growth in human populations, made
possible by the industrial-scale exploitation of natural resources and services

The globalised industrial economy 1s committed to continuing growth in
production and consumption

Growth demands ever-increasing energy and material inputs

Growth results in increasing levels of pollution, resource depletion, species
loss and ecosystem degradation.




Business-as-usual

Advocates of business-as-usual suggest that what
1s needed to maintain a growing economy 1S
increased efforts to extract more energy from
deeper reservoirs, oil sands, nuclear.

They disregard the declining net return of these sources (increased efforts mean
increased energy investment, less net energy, more environmental disturbance).

kot o s Business-as-usual 1s not an option
YoU WANT US ALL To

RO for the future of humankind.

Unlimited growth 1s impossible in
a limited planet and sooner or
later every activity is constrained
by a limiting factor.




Howard T. Odum (1925-2002):
the impossibility of business-as-usual
and the search for alternatives.

T@OLW, N|

Howard T. Odum and Elisabeth C. Odum (2001)
A Prosperous Way Down: Principles and
Policies.

Boulder, Colorado: University Press of Colorado.
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A PEAK FOR (CHEAP) URANIUM ?
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Net Energy and EROT (Energy Return on
Investment)

Net Energy = E_,

EROI=E_,/

Energy Return on Investment (EROI) =

Energy Energy
Investment Investment
E. E.

in,1 in,2

Resource in i Extracted \_Refining Refined
the ground process resource process resource




Fossil oil to
gasoline
process

(Michael Wang, 2005, Ethanol
from Corn and Cellulosics,
Center for Transportation
Research, Argonne National
Laboratory)

The EROI of
refined fuels 1s
around 5:1
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The search for alternatives

Our addiction to fossil fuels results on intensive consumption of
petroleum derivatives which, combined with diminishing petroleum
resources, causes environmental and political concerns.

Electricity and heat can be provided by a variety of renewable
alternatives (wind, sun, hydro, geo, and so on).

Instead, the fossil resource alternative for production of
transportation fuels and chemicals 1s biomass, the only C-rich
material source available on the Earth, besides fossils.




Alternatives must be:

A) Environmentally friendly: less, or no loading at all on water,
land, air, climate, biodiversity.

B) Renewable. The age of fossil fuels is over.

C) Complex and integrated: components interact and exchange
energy and matter flows in order to decrease emissions and
waste.

D) Aiming at wellbeing, not at growth.

E) Sustamnable wunder different points of view: energetic,
environmental, economic, and social.




Bio-ethanol production in the contaminated land
around Chernobyl (Belarus) ?

In 2009 an Irish Company (Greenfield Project Management Ltd) planned to use four million
ha in Belarus, in the Chernobyl surroundings. The biofuel produced should have been
commercialised in Europe. This was a false annoucement to raise money in order to avoid
bankrupcy (http://www.facebook.com/note.php?note_id=145364802189057).

On 16 May 2011, PhotoFuels, a Belgian-Ukrainian joint venture, announced to have
obtained approval from the Ukraine government to plant several test fields of common
millet for biofuels in the Chernobyl area evacuated in the year 1986 after the nuclear power
accident. (Deutsche Presse-Agentur)




The failure of Bioenergy from food crops:

corn, wheat, oilseeds,...
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Units Wheat Com
Energy and mass flows
Total commercial energy invested for grain production J/hajyr 2.3BE+10 2.92E+10
Total commercial energy invested for bioethanol production J/hajyr 3.28E+10 492E+10
Grain produced [hafyr 4 30E+06 7.60E+06
Ethanol produced g/hafyr 1L.20E+06 1.96E+06
Energy content of bioethanol produced J/hajyr 3.57E+10 5.84E+10
Net energy yield of bioethanol (energy of ethanol-energy invested) J/ha/yr 2.89E+09 9.15E+09
Ethanol production
Energy cost of ethanol Jig 2.51E+04
Output/input energy ratio L19
Transformity of ethanol, with labor and services sej/] L.8OE+05
Transformity of ethanol, without labor and services sej/] 1. 2viE

Energy and eMergy evaluation of bioethanol production from wheat

in Henan Province, China

Xiaobin Dong?, Sergio Ulgiati®, Maochao Yan 9, Xinshi Zhang?, Wangsheng Gao“*

Energy Policy 36 (2008) 3882— 3892




Second Generation vs First Generation?
Maybe...

» 1% generation biofuels

Derived from Biomass harvested for the sugar, starch and oil
content, which can be converted using hydrolysis &
fermentation

Technology established

Major Issues - Crops needed, Food v Fuel, Water Demand,
Environmental issues - land clearing, soil degradation.

* 2nd generation biofuels

Produced from lignocellulosic biomass, utilising hydrolysis,
fermentation, gasification or pyrolysis

Can utilise Waste Materials (e.g. waste paper, paper mill waste,
wood waste, agricultural crop residues etc)




Table 5 Energy and emergy performance indicators for bioethanol production for each pretreatment system

Pretreatment system

Item Unit

Dilute acid Controlled pH Flowthrough AFEX ARP Lime
Energy and mass flows
Total energy invested for bioethanol production J 1.93E+13 7.48E+12 4 48E+13 8.31E+12 1.06E+13 2.22E+12
Mass of bioethanol and co-products produced g 3.57e+08 3.07E+08 3.82E+08 2.56E+08 3.07e+08 2.36E+08
Energy content of biocethanol and co-products produced| J 1.06E+13 9.13E+12 1.14E+13 7.61E+12 9.15E+12 7.02E+12
Net energy yield J -8.67E+12 1.65E+12 -3.34E+13 -7.06E+11 -1.44E+12 4.81E+12
Emergy flows
Locally renewable inputs, R sel 4 09E+17 4 0SE+17 4 09E+17 4 09E+17 4 09E+17 4 0SE+17
Locally nonrenewable inputs, N sel 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
% renewable of purchased inputs, %R_F sel 1.04E+16 8.22E+15 1.38E+16 1.02E+16 8.45E+15 1.01E+16
% nonrenewable of purchased inputs, %N_F sel 3.21E+18 1.37E+18 5.54E+18 7.13E+18 6.04E+18 1.1SE+18
% renewable of Labor and Services, %R_S sel 6.32E+16 5.55E+16 6.70E+16 4 76E+16 5.55E+16 4.46E+16
% nonrenewable of Labor and Services, %N_S sel 1.80E+17 1.58E+17 191E+17 1.35E+17 158E+17 1.27E+17
Imported emergy, F = %R_F+%N_F+%R_S+%N_S sel 3 47E+18 1.59E+18 5.81E+18 7.33E+18 6.26E+18 1.37E+18
Total emergy inputs, ¥ = R+N+F sel 3.88E+18 2.00E+18 6.22E+18 7.74E+18 6.67E+18 1.78E+18
Bioethanol production
Output/input energy ratio 0.55 0.25 0.92 0.86 3.17
Transformity of bioethanol, with co-product self/] 3.65E+05 5.47E+05 1.02E+06 7.29e+0 2.53E+05
EYR=Y/F 112 107 1.06 107 130
ELR = (N+F)/R 848 14.20 1791 15.30 3.35
% Renewable = 1/(1+ELR) = R/Y 10.55% 6.58% 5.29% 6.13% 23.00%
ESI = EYR/ELR 0.13 0.08 0.06 0.07

(L1 etal., 2010; Wyman et al., 2005)




What is a biorefinery?

Biorefinery: the sustainable processing of biomass
into a spectrum of marketable products and energy”

(IEA Bioenergy Task 42)

Agricultural Wood residues Sorted municipal Herbaceous
residues solid waste energy crops

The “biorefinery” concept embraces a wide range of
technologies able to separate biomass resources

(wood, grasses, corn, urban waste) into their building HEAT

blocks (carbohydrates, proteins, biogas, fats)... ES&%R

CHEMICALS

BIOMASS

...that can be converted to value added FO00

products, biofuels and chemicals. MATERIALS
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\Biochcmicals

Simplified scheme of biorefinery: conversion of biomass into bioproducts.

Platform

Sugar (Biochemical)

Syngas
(Thermochemical)

Biogas

Carbon-nich chains
()

Table 1—Most common biom finery platforms and their major charactenstics

Raw materials

Lignocellulosic and
starch biomass

Lignocellulosic
biomass but also
plastics, rubber elc.

Liquid effluents
Manure

Plant oils such as
soybean, rapeseed
cormn, palm, and
canola oils. Animal fat

Main processes
Chemical and

enzymatic hydrolysis,

Fermentation,
Biotransformation,
Che mical and
catalytical processes

Thermochemical
processes :

- Qasification

- Pyrolysis

Anaerobic digestion

Transesterification

Products

Added value chemicals
(both from sugar and lignin)
Buikding block chemacals
Matenials (from lignin or
lignocelulose)

Fuel ethanol.

Heat and electricity (from
lignin)

Syngas

Pyrolysis oil

Added value chemicals
Caseous or liquid fuels
Methane and carbon dioxide
(biogas)

Added value chemicals
Fatty acid methy| ester
(biodesel),

Glycerin and fatty acids as
platform chemicals

Development stage

Laboratory,
large scake
pilot plant
and
commercial
(sugarcane
and starch
based)
Laboratory,
large scake
pilot plant

Large scale
pilot plant,
commercial

Commercial




CELLULOSE

- Extensive intramolecular and intermolecular H-bonding
 Insoluble in water and most common organic solvents

http://www.doitpoms.ac.uk/tlplib/wood/printall.php accessed on 9/03/09



HEMICELLULOSE
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LIGNIN
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Chemical products from ligno-cellulosic

materials
o)
H.C—0 0 /
9 ’
\O \ / 1. Levoglucosan
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5. Levulinic acid
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° OH
Q/ \ / OH
O
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F. Shafizadeh and Y. L. Fu, Carbohydr. Res., 1973, 29, 113-122.
R. Krishna, M. R. Kallury, C. Ambridge and T. T. Tidwell, Carbohydr. Res., 1986, 158, 253-
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Chemical products from ligno-cellulosic
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Step No. 1:

Identifying substates,

infermediate products, and
technological pathways
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The European Union roadmap to Biorefineries (huge
investments for research, 7th RTD program)

2[T!O “2™generation”; EtOH, Syn

DME from lignecellulosic biomass: SNI

Source: Biofuels in the European Union — A vision for 2030 and bzyond,
Final report of the Biofuels Research Advisory Council, June 2006




Step No. 2:

Designing an integrated system
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Step No. 3:

Assessing the profitability and
environmental friendliness of
biorefineries

A case study with LCA




Life Cycle Assessment- LCA

Life Cycle Assessment (LCA) is a technique for assessing the potential
environmental aspects associated with a product (or service), by:

>

compiling an inventory of
relevant inputs and
outputs

evaluating the potential
environmental impacts
associated with those
inputs and outputs

interpreting the results of
the inventory and impact
phases in relation to the
objectives of the study



F. Cherubini, S. Ulgiati/Applied Energy 87 (2010) 47 -57
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Fig. 1. Comparison between the production chains of the biorefinery and the fossil reference systems.



Table 4
Final prod ucts produced from the biorefinery using com stover or wheat straw as maw
matenals.

Prod uct Unit/a Biorefinery-Com  Biorefinery-Wheat

stover straw

Bioethanol 10°km 1208 1083

Heat (from biomethane) T 243 350

Electncity ( from CHP) 1) 183 902

Heat (from CHP) 1) 2.17 3.74

Phenols kt 1.75 1.46




Table 6. Quantities of final products, GHG emissions and primary energy demand of

biorefinery system and fossil reference system.

Birefinery System

Fossil Reference System

Product/service:
Transportation (bioethanol)
Transportaton (MTHF)
Furan resins

FUMA

Electricity

Heat

Biomethane 261
0 13.7
(o N 707

Fertlizer (no benefit) 369

1,082
122
291
334

rar

230

224

Product/service:

Transportation (gasoline) 1204
291
334
333
224
261
137

707

Epoxvresins (from fossil)
FUMA (from fossil)
Electricity (from natural gas)
Heat (from oil)

Natural gas

H, (from natural gas)

O, (convertional , from air)

Environmental impacts.
Total GHG enuszions
CO,

368
270

}\O 22

CH, 061
Primary energy demand
Fossi 208
Renewable (biomass 10,495
Oxhers 16

10,858

Environmental impacts (inchiding bheat):
Total GHG emissions

CO,

N.O

CH,

Primarv energy demand
Fossi

Renewable

Others

GHG and energy savings

With beat credits
300
0.66
4527
1005
Excluding heat credits
GHG emissions saved 276
061
4231
939

GHG emissions saved

Fossil energy saved

Fossil energy saved

kt Q0,eq/a

t COeq My ywcca
TY/a

(€2 1) SU—

kt Q0,-eq/a

t CO-€qMyywoca
TI/a

€2 [, ——

Environmental impacts (exchiding heat):
Total GHG emissions 313
CO, 209
N.O 6.76
CH, 7.15
Prmarv energy demand 4474
Fossi

Renewable

Others




kKtCOz-eq/a
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Fozszil reference system

Companson between GHGs of biorefinery and fossil reference system.




Table 5
GHG emissions and savings of the biorefinery systems in comparison with their respective fossil reference systems.

Unit/a Corn stover Fossil reference system Wheat straw Fossil reference system

GHG emissions

Total kt COreq. 137 296 130
0, kt COeq. 107 280 113
NO kt COreq. 263 6.51 133
CHs kt COreq. 389 105 3.88

GHG savings

Per year kt COeq. 159 125
Per year x 53.7 490
Per t,,, feedstock t (0 yeqty, 333 262
Per hectare t COyeq/ha 3.01 1.82

Table 6
Results of the CML impact assessment method.

Impact category Unit Biorefinery com stover Fossil reference system Biorefinery wheat straw Fossil reference system

Abiotic depletion kt Sb eq 030 209 0.35 1.78
Global waming (GWP100) kt COy-eq 137 296 130 255
Ozone layer depletion (ODP) kg CFC-11eq 831 29.7 8.86 26.9
Human toxicity kt 1 4-DB eq 24.7 192 25.6 167
Fresh water aquatic ecotox. kt 1. 4-DB eq 254 17.4 2.90 14.8
Marine aquatic ecotoxicity Mt 1.4-DB eq 1.7 51.2 20.1 4.5
Temrestrial ecotoxicity kt 1. 4-DB eq 022 0.60 0.28 0.54
Photochemical oxidation kt CaHy 0.06 0.28 0.05 0.25
Acidification kt SO; eq 093 1.16 078 1.03
Eutrophication kt PO,-eq 0.52 0.17 039 0.15




Step No. 4
Expanding the focus of the assessment:

a) thermodynamic efficiency (exergy),

b) demand for environmental support
(eMergy), and

c) economic feasibility.

An extended LCA




Multidimensional Life Cycle Assessment

1. LCA - Matter and energy flows

2. Extended LCA: SUMMA

SUstainability Multimethod Multiscale Approach

LCA + process efficiency +

SUMMA - environmental support +
embodied time + money flows




SUstainability Multimethod Multiscale Approach
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Step No. 5: Marginal and polluted land (GIS
- Geographical Information System)

Case study:

Non-food crops on land unsuitable for
agriculture.

a) Cropping for energy
b) Biorefinery, the Biofine process




Land Use in Campania Region
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Usable and Net Energy Delivered to the user by all the co-products of the different
phases of biodiesel production chain (data per hectare).

Energy
content
(J/ha/yr)

Usable

Energy (for
residues 50%

less than
HHV)
(J/ha/yr)

Transportation
of residues (5%
of energy
content)
(J/halyr)

Usable Energy

Delivered
(J/ha/yr)

Net
Energy
Delivered

(J/halyr)

Invested for
process

1.82E+10

Biodiesel

Cake meal

~—
=
=
=

o]
=
=)

o

Straw

1.46E+10
1.17E+10
4.36E+10

1.46E+10
5.85E+09
2.18E+10

7.30E+08
5.85E+08
2.18E+09

1.39E+10
5.27E+09
1.96E+10

Delivered

3.88E+10

Invested for
process

2.59E+10

Biodiese 1
Cake meal

High Input

Straw

2.06E+10
1.66E+10
5.51E+10

2.06E+10
8.30E+09
2.76E+10

1.03E+09
8.30E+08
2.76E+09

1.96E+10
7.47E+09
2.48E+10

Delivered

5.19E+10

2.60E+10




Net Energy Delivered (NED) by the biodiesel production chain and fractions of
agricultural and regional energy consumption potentially replaced

Low Input High Input
(J/yr) (J/yr)
Total NED from polluted areas 8.90E+14 1.12E+15
% of energy budget of Campania region 0.33% 0.41%
% of energy budget of regional agricultural sector 10.63% 13.41%

Economic balance between the total economic investment for biodiesel and heat
production chain and the saving of economic investment associated to such bio-
energy in marginal land.

Low Input (€/yr) High Input (€/yr)
Total Economic Investment (a) 3.78E+07 4.62E+07
Value of delivered energy (b) 9.68E+06 1.22E+07
Economic Balance (b-a) -2.81E+07 -3.40E+07
Ratio a/b 3.90 3.79
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An Example: The Biofine Process

An Existing Process

* A high temperature, fast acid hydrolysis of biomass
polysaccharides.

The feedstock 1s hydrolysed with 1-5% sulphuric acid 1n
two reactors.

The first reactor hydrolyses the sugars and produces 5-
hydroxymethyl furfural (HMF) from the C6 sugars and
furfural from the C5 sugars.

The HMF goes to the second reactor where levulinic acid
1s formed (and smaller amounts of formic acid)
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Total Market Total

Products and by-products ext?a:tfion Ref Ma:;sgol:' :.1' :_:‘;)( t mass (;) Price Ref value
: (kgyr’) (Ekg?) ©
Seeds (%) 1200.00 5.18E+07
Oil (") 33.0% [58] 396.00 1.71E+07
Lubrificants () 6.0% [58] 23.76 1.03E+06 0388 [62] 9.03E+05
Biodieszl () 08.0% [58] 388.08 1.68E+07 0.78 [62] 1.31E+07
Glycerin (%) 10.0% [58] 38.81 1.68E+06 0.11 [62] 1.76E+05
Cake Meal () 58.0% [63] 696.00 3.01E+07
Proteins () 39.0% [63] 27144 1.17E+07 1.60 [64] 1.88E+07
Fibers (°) 31.8% [63] 22133 9.56E+06 0.11 [65] 1.05E+06
Glucosinates () 5.1% [63] 35.50 1.53E+06 0.00E+00
Soluble sugar (%) 5.7% [63] 39.67 1.71IE+06 240 [64] 4.11E+06
Others () 18.4% [63] 128.06 5.53E+06
Agricultural residues (%) 3400.00 1.47E+08
Cellulose (5
Glucose 32.5% [66] 1105.00 477EX0T 030 [64 1.43E+07
Hemicellulose ()
Xylose 18.0% [66] 612.00 2.64EX07 350 [67] 9.25E+H07
Galactose 1.5% [66] 51.00 2.20E+06 na
Arabinose 1.2% [66] 40.80 1.76E+06 na
Mannose 1.2% [66] 40.80 1.76E+06 na
Lignin (‘) 18.7% [66] 35.80 275E+07 020 [68] 5. 49E+06
Others (‘)
Ash 5.2% [66] 176.80 7.63E+06
Extractives 20.9% [66] 710.60 3.07E+07
Total economic income from biorefinery chain 1.50E+08

(') Referred to 43183 ha of Brassica cropping; (*) from Brassica cropping; () from seeds; (%) % of o0il mas\(") % from
biodiesel; (*) from cake meal mass; (r) from agricultural residues



Economic balance between the total economic mvestment for biorefinery
chaimn and total production income.

Total economic mvestment for energy purpose (€/yr) 2 87E+07

Cost for biorefinery plant (€/y1) 4 26E+07
Total cost (a) (E/y1)

Economic income from biorefinery chain (b) (€/y1)

Net economuc (b-a) (€/y1)

Ratio b/a
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Indicators Lezlzlil(;uc Fzr:dlc Biodiesel  Glycerin
Material resource depletion
MI abiot (g/g) 4.48 0.37 2.68 1.19
MI water (g/g) 26.17 2.17 27.56 12.20
Energy depletion
GER per unit mass (J/g) 3.29E+04 2.73E+03  2.08E+04 9.19E+03
Oil eq (g oil/g) 0.78 0.07 0.50 0.22
Oil eq (g 0il/J) 2.20E-05 8.13E-06 1.32E-05 1.32E-05
Oil eq (g 0il/€) 871 871 633 2090
Emergy (demand for environmental support)
Specific emergy (sed/g) 3.58E+12 1.24E+13  1.17E+10 1.17E+11
Transformity (seJ/J) 9.83E+07 1.51E+09  3.11E+05 7.02E+06
EYR 1.00 1.00 1.14 1.14
ELR 56.87 56.87 8.28 8.28
% Renewable 2% 2% 11% 11%
Climate change
Global warming (g CO2 -equiv/ g) 2.46 0.20 1.24 0.55
Acidification (g SO2 / g) 9.66E-03 8.02E-04  3.92E-03 1.73E-03
Eutrophication (g PO4/g) 9.44E-04 7.84E-05 4.10E-04 1.82E-04




Energy cost of selected plastics

_H Process energy
(GPR)

/IEI Calorific value

GHR: Gross Process energy Reguirements
LHY: Lower Heating Value
total of GPR and CV Is equal 10 the Gross Energy Requirements (GER) In GJL
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Concluding remarks

We will have to rely on biomass for liquid fuels, chemicals and materials,
when we run out of cheap fossil fuels. No doubt on this.

Cropping for energy, even in marginal land, 1s never an option (a part from
Brazilian sugar cane, in some cases) due to low energy return and high
costs.

Instead of expensive cropping, the use of lignocellulose residues and waste
provides interesting, substrate abundant, low cost and energy self-sufficient
alternatives (biorefinery).

The biorefinery concept solves the problem of agro-industrial and urban
waste, and promises cheap liquid fuels and biomaterials/biochemicals.

Biochemicals can be already produced at competitive cost with petro-
chemicals. Bioenergy 1s more difficult, because of low hydrolysis yields.

Some high yield processes (Biofine) are very close to the commercial stage.

Lignocellulose 1s everywhere and therefore contributes to the independence
from fossil fuels.




Thank you
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