

University of British Columbia Norman B. Kevil Institute of Mining Engineering Vancouver Canada

Processing Centers in Artisanal and Small-scale Gold Mining: Evolution or More Pollution?

Marcello M. Veiga

Associate Professor

Visiting Professor, Dept Mining Engineering University of São Paulo, Brazil

Artisanal Mining

The term <u>artisanal mining</u> encompasses all small, medium, informal, legal and illegal miners who use <u>rudimentary</u> processes to extract gold and other minerals from secondary and primary ores

Ghana

Brazil

Artisanal Mining

About 30 million artisanal miners extracting more than 30 minerals in virtually all developing countries

Venezuela

Zimbabwe

Gold price increasing = More people involved

This is the biggest gold rush the world has ever seen

- 10 to 15 million artisanal miners producing around 350 tonnes Au/a in more than 70 countries
- About 50-100 million people directly and indirectly involved in artisanal gold mining

Guinea

Children in Artisanal Mining

ILO (2004) estimated 2 million children working in artisanal mining

Mozambique

Laos

Children in Artisanal Mining

Suriname

Guinea
Photo: Rukimini

Causes of Poor Artisanal Mining Practice

- Disorganization & Transience
- No technical assistance
- Lack of education of miners
- Inadequate regulations
- Financial barriers
- Lack of support from mainstreams of Society
- POVERTY

Tanzania

Environmental, Health & Social Problems Caused by Artisanal Gold Mining

- Water siltation
- Landscape degradation
- Prostitution, Drugs & Crimes
- Money laundering
- Deforestation
- TB, malaria, tropical diseases, HIV/AIDS
- Mercury & Cyanide pollution

Indonesia

Galangan, Kalimantan, Indonesia

- 10,000 illegal artisanal miners invaded area
- 200 km² of forest (Orangutans habitat) destroyed
- 2 tonnes/a Hg lost

Before After

What Are the Solutions?

- Monitoring, monitoring and more monitoring (preferred by the MAJORITY of researchers)
- Legalization (preferred by MOST Governments)... but NO enforcement
- Processing Centers (being adopted in MANY artisanal mining regions)
- Education and technical assistance (ignored by ALL Governments)

Number of samples analyzed for Hg in the Amazon: 8333 samples

Source: Alberto Rogerio B. Silva

Examples of Ineffective Laws: Brazilian Approach

Law 97.507/89 – Hg and CN prohibition

"No artisanal mining site is allowed to use Hg or CN without previous permit issued by the environmental authority. Environmental crimes are punishable with fines and jail"

Reality:

Survey showed 99.3% of artisanal miners in Tapajós, Brazil using Hg and CN without any license

Brazil

PROCESSING CENTERS: Miners Take Their Ores to Be Processed by Trained Operators

Venezuela

Processing Centers in Indonesia

- They use the most rudimentary process
- 25 to 40% of Au recovered (LOW)
- Adding Hg into the Grinding Circuit
- About 40-50% of Hg added is lost
- P.C. owners keep the tailings with Hg & Au as a payment

Processing Centers in Indonesia

Hg-contaminated Tailings Are Submitted to Cyanidation

Processing Centers in Indonesia

Tailings with Hg & cyanide reach the streams

Processing Centers in Colombia

Owners of the Processing Centers Use NaCN to Extract Residual Gold from Hg-Tailings

Processing Centers in Zimbabwe

- Cu-Hg Plates amalgamate the whole ore
- Hg-contaminated tailings are submitted to cyanidation in Processing Centers

Processing Centers in Ecuador

- Poor extraction of gold from the ore brought by miners to one of the 110 Centers in Portovelo
- P.C. owners retain the tailings

Processing Centers in Ecuador

92 cyanidation tanks in the town of Portovelo leaching Hg-contaminated tailings

Processing Centers in Ecuador

Tailings with Hg and cyanide are dumped into the Amarillo River

Processing Centers in Brazil

Miners use Cu-amalgamating plates to recover the "easy" more accessible gold

Processing Centers in Brazil

- Hg-tailings are leached with NaCN
- Hg-cyanide in tailings reach the rivers
- 60% of fish >0.5 ppm Hg
- WHO max guideline for edible fish = 0.5 ppm Hg
- One fish sample = 22 ppm Hg

Brazil, São Chico, Amazon

Global Mercury Project

Sites		Mean Hg in fish (ppm or mg/kg)	Number of samples
Brazil	São Chico	2.53	73
Creporizinho		0.36	161
Indonesia	Galangan	0.21	264
	Talawaan	0.58	156
Laos Luang Prabang		0.066	65
Sudan	Blue Nile	0.05	108
Tanzania Rwamagasa		0.13	285
Zimbabwe	Kadoma	0.41	52

Mercury Forms Soluble Complexes with Cyanide

- [Hg(CN)₄]²⁻ which is stable at pHs above 8.5 and Hg(CN)₂ (aq), stable at pH below 7.8
- These complexes can be either methylated in the sediments or directly bioaccumulated

Velasquez, P.C. et al. (2011). Journal of Cleaner Production. v. 19, p. 1125-1133.

Education: Demonstration of Cleaner Techniques

Indonesia

- The pieces of equipment were discussed and designed with miners
- The majority of the equipment is locally manufactured

Demonstrating Cleaner Techniques

Laos

Demonstrating Cleaner Techniques

Tanzania

Demonstrating Cleaner Techniques

Brazil Zimbabwe

Demonstrating Availability of Gold Concentrators and How to Improve Efficiency

Zig-zag Sluice

Indonesia

Zig-zag sluices increase chances of gold being capture by carpet

Laos

Demonstration of Simple Solutions to Reduce Hg Vapor Exposure

Miner burning amalgam in an open pan Hg vapor exposure of the whole family

Cambodia

Photo: Tom Murphy

Home-made Retort Using Kitchen Bowls

wet sand is added to seal

mercury is condensed on the glass bowl and recovered

amalgam in a small cup

Retort Made of Kitchen Bowls

Using a enameled steel bowl

Adding a small stainless steel salad cup

Retort Made of Kitchen Bowls

Zimbabwe

Laos

Retort Made of Kitchen Bowls

Sudan

Kitchen-Bowl Retort

Sealed with

with wet sand

Ecuador

Kitchen-Bowl Retort

Colombia

Kitchen-Bowl Retort

Chile

Replacing Hg with Cyanide Intensive Cyanidation of Concentrates

(Field Tests in Ecuador)

- 95% of gold extracted from gravity concentrate in 8 h of intensive cyanidation in a small ball-mill
- Use of activated carbon
- Cyanide was destroyed with bleach

Ecuador

Training the Trainers

PREMITURA MUNICIPAL DE ITATURA

CENTRE DO SEU TESOURO

LEVER DO SE

Indonesia

Sudan

Laos

"Take care of your Treasure"

Despesca na piscina

FAÇA A PISCINA QUANDO FIZER A DESPESCA NA PISCINA. LEMBRA VOCÊ RECUPERA O MERCÚRIO, O PEIXE AGRADECE E VOCÊ NÃO ADOECE.

COMO VOCÊ VÊ NO DESENHO ACIMA FAZER UMA PISCINA NÃO DARÁ MUITO TRABALHO, E O MATERIAL TAMBÉM NÃO É MUITO CARO E FÁCIL DE ACHAR.

້ເຄງການກ່ຽວກັບ ການນຳໃຊ້ສານບາ ຫຼອດໃນທົ່ວໂລກ

ການນຳໃຊ້ສານບາ ຫຼອດ ແລະ ສຸຂະ ຫຼາບຂອງຄົນ ໃນ ຄອບຄົວ

GEF-UNDP-UNIDO Lao PDR

Laos

ປົກປ້ອງຄອບຄົວຂອງທ່ານ

- ສານບາຫຼອດແມ່ນມີ
 ຄວາມອັນຕະລາຍ
 ຫຼາຍ ໂດຍສະເພາະ
 ແມ່ນຕໍ່ລູກໃນທ້ອງ
 ແລະ ເດັກນ້ອຍ
- ໃຫ້ຜູ້ຍິງແລະເດັກນ້ອຍຢູ່ ໄກຈາກເຂດທີ່ມີການຈູດ ບາຫຼອດ
- ຫ້າມຈູດຢູ່ບ່ອນພັກອາໃສ

Indonesia

Sudan

There is Light at the End of the Tunnel

- Artisanal miners are becoming small-scale miners
- More responsible and cleaner gold production
- No mercury being used
- Cyanide is destroyed after use

Ecuador

Conclusion

- Legal approach to introduce cleaner production in artisanal gold mining areas is ineffective
- Monitoring is important but not enough
- Processing Centers are concentrating wealth in the hands of owners and creating Hg & CN pollution
- Hg-cyanide environmental effects are still unknown
- Solution is education and permanent technical assistance to miners
- Solution is evolution of artisanal miners to become responsible small miner

We need to change this perception:

"It's easier for a man to become an artisanal miner than for a miner to become a man"

A Brazilian artisanal gold miner

Thank you

