Análise da performance de sedimentadores de alta eficiência para suspensões de chorume

(Performance Analysis of High Efficiency Thickeners to Suspensions of Leachate)

Estevão Frigini Mai

Flávia Pereira Puget Marcos Roberto Teixeira Halasz

O CHORUME

 Líquido originado da decomposição de matéria orgânica, responsável por uma alta quantidade de carga potencialmente poluidora de corpos d'água.

RECIRCULAÇÃO

 Aumenta a eficiência de compactação do aterro (REINHART, AL-YOUSFI, 1996);

 Promove um rápido desenvolvimento das bactérias metanogênicas → redução carga orgânica;

Reduz a demanda sobre as ETE's.

O ATERRO DE ARACRUZ - ES

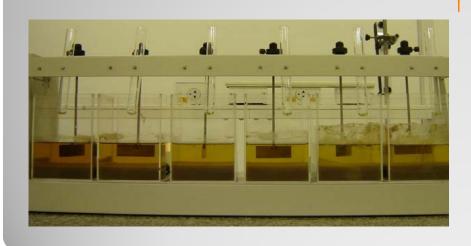
- 8 anos
- 70t/dia
- Recirculação

Sedimentação: Tratamento primário

• Etapas básicas de uma ETE:

Tem por objetivo remover partículas coloidais, material sólido em suspensão e ajustar o pH para o posterior tratamento do efluente.

OBJETIVOS


- Otimizar o processo de floculação-coagulação;
- Caracterizar os flocos experimental e matematicamente (modelos), comparando-os;
- Estudos em protótipo de sedimentador em batelada (levantamento de parâmetros inerente a modelagem);
- Estudos em protótipo de sedimentador contínuo.

Metodologia / Resultados

Formação dos flocos (floculação)

- Agente coagulante e concentração: FeCl₃; Al₂(SO₄)₃; Ca(OH)₂; NH₄OH;
- pH do chorume: 3 8;
- Agitatação.

Jar - Test

- Ag. Coagulante = $Al_2(SO_4)_3$
- Concentração = 750 ppm
- pH = 6
- Rotação = 180 rpm por 4 min
- + 40 rpm por 2 min

Caracterização dos flocos

- Porosidade do sistema
- Velocidade de sedimentação
- Densidade dos flocos
- Esfericidade dos flocos
- Diâmetro dos flocos

Cálculo da porosidade

 Método de Bailey e Ollis para a estimativa do volume dos flocos e, consequentimente a porosidade do sistema.

$$\varepsilon = \frac{V_c}{V_c + V_s}$$

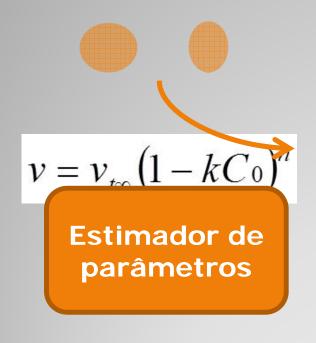
Valor calculado: $\varepsilon = 0.11$

CÁLCULO DA DENSIDADE

- O cálculo da densidade do fluido e do sólido foram realizados através de picnometria;
- O cálculo da densidade dos flocos será realizado utilizando o método de Bailey e Ollis, descrito por França et al. (1999);

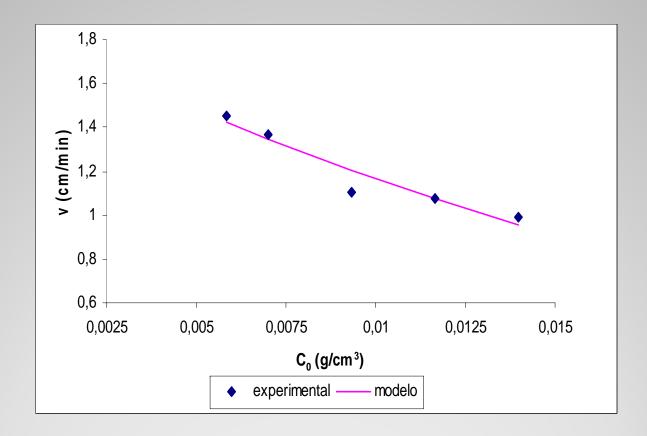
$$\rho_{fl} = \rho_f + \frac{(\rho_s - \rho_f)}{k\rho_s}$$

Grau de floculação


Valores obtidos: $\rho_s = 1,67g/\text{cm}^3$; $\rho_f = 1,008 \text{ g/cm}^3$ e $\rho_{fl} = 1,05g/\text{cm}^3$

Cálculo da velocidade de sedimentação e grau de floculação

 Teste de proveta → Concentração inicial versus Velocidade inicial de sedimentação.


Cálculo da velocidade de sedimentação e grau de floculação

ESTIMA (Pinto et al., 1993)

<u>Cálculo da velocidade de sedimentação</u> <u>e grau de floculação</u>

Valores obtidos: $v_{t\infty} = 1.86$ cm/min e k = 9.58

<u>Determinação experimental do diâmetro</u> <u>médio do floco</u>


- Microscopia Óptica com ampliação de 400 vezes;
- Aproximadamente 300 medidas.

<u>Determinação experimental do diâmetro</u> <u>médio do floco</u>

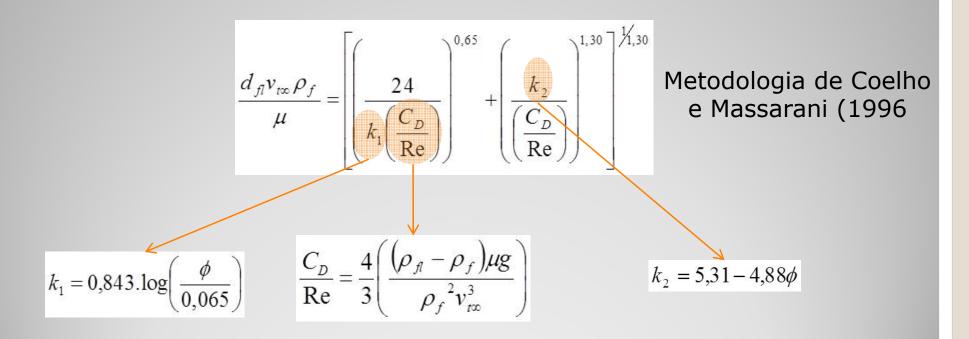
Distribuição dos diâmetros experimentais.

Valor médio experimental: $d_{fl} = 119 \mu m$

Determinação teórica do diâmetro médio do floco – Modelo I

Modelo I – Baseaia-se na velocidade de Stokes.

$$v_{t\infty} = \frac{d_{fl}^2 (\rho_{fl} - \rho_f)g}{18\mu}$$


Determinado através do estimador de parâmetros.

Determinador pelo método de Bailey e Ollis

Valor médio teórico I: $d_{fl} = 117 \mu m$

<u>Determinação teórica do diâmetro médio</u> <u>do floco – Modelo II</u>

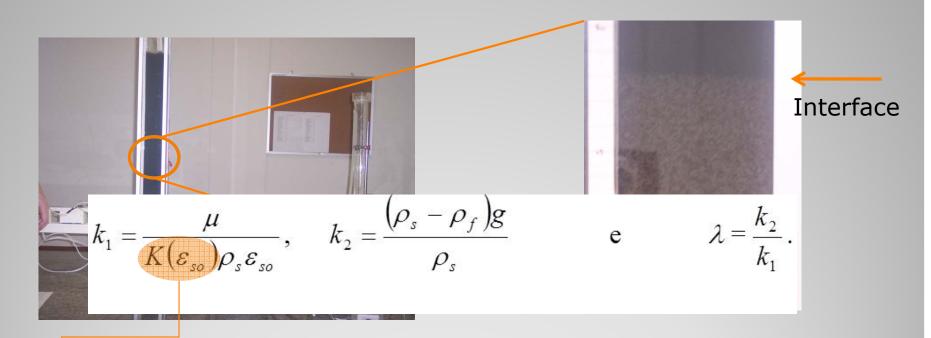
Modelo II – baseia-se na esfericidade φ.

<u>Determinação teórica do diâmetro médio</u> <u>do floco – Modelo II</u>

 O cálculo da esfericidade → Mohsenin (1970), que determinou o grau de esfericidade de um elipsóide através da Equação abaixo.

$$\phi = \frac{\sqrt[3]{abc}}{a}$$

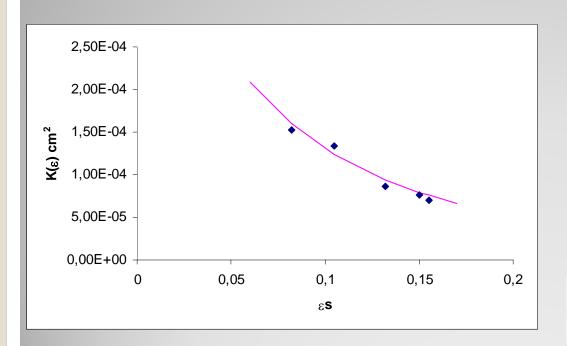
$$k_1 = 0.843.\log\left(\frac{\phi}{0.065}\right)$$


$$k_2 = 5,31 - 4,88\phi$$

onde a, b e c são os diâmetros dos três eixos de um elipsóide.

 $\phi = 0.76$; Valor médio teórico II: $d_{fl} = 122 \mu m$

Teste de Sedimentação em batelada


• Expressão de variação da altura da interface com o tempo.

Permeabilidade
$$h = h_o - \lambda \left(t - \frac{1 - e^{-k_1 t}}{k_1} \right)$$

Teste de Sedimentação em batelada

O ajuste da permeabilidade com a porosidade foi feito através da equação de Kozeny-Carman:

$$K(\varepsilon_s) = (\alpha + \gamma \varepsilon_s) \cdot \frac{(1 - \varepsilon_s)^3}{\varepsilon_s^2}$$

$$K(\varepsilon_s) = \left(-4,29.10^{-7} + 2,22.10^{-5} \varepsilon_s\right) \cdot \frac{\left(1 - \varepsilon_s\right)^3}{\varepsilon_s^2}$$

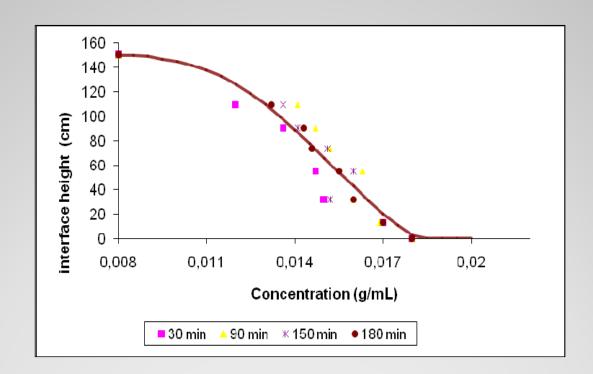
Sedimentador Dorr Oliver:

 $A = 0.05 \text{m}^2$; $h_{\text{sedimentador}} = 1.7 \text{m e Q} = 10 \text{cm}^3.\text{s}^{-1}$

Floculação

Transbordo - Efluente Clarificado

Amostradores ao longo do sedimentador (espaçados em 15 cm)



Fundo do sedimentador – remoção do Lodo

Sedimentação contínua após regime estabelecido

• Estabilização do sistema (interface) após 3h de operação.

Filtro de carvão ativo

Passagem do líquido clarificado por uma coluna contendo carvão

ativado.

	Chorume fresco	Clarificado filtrado
Ca (µg/mL)	54,4675	32,2075
Mg (µg/mL)	8,6965	9,1940
Fe (µg/mL)	12,8140	0,1725
Zn (µg/mL)	0,5625	0,4625
Cu (µg/mL)	0,2025	0,1040
Mn (µg/mL)	2,4310	2,1905

CONCLUSÕES

- □ O sulfato de alumínio mostrou-se mais eficiente como coagulente que os demais testados;
- Os flocos gerados neste tratamento podem ser modelados utilizando as técnicas propostas, e os resultados são validados pelos experimentos realizados;
- ☐ Estudos em sedimentação de alta eficiência embasados em quaisquer dos dois modelos propostos são possíveis;
- Os resultados preliminares da filtração com carvão ativado mostrou-se satisfatórios quando a redução da concentração de metais, assim como, redução da cor.

<u>Agradecimentos</u>

CNPq

AMBITEC (Brasil-Ambiental)

Fundação São João Batista

