

"CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD"

Tratamento de Efluentes Têxteis Utilizando Processos Físico -Químicos e Oxidativos Avançados

Tosato Jr., J.C.^a and Halasz, M.R.T.^b

a. MPTA, Faculdade de Aracruz, Espírito Santo, juniortosato@ig.com.br

b. MPTA, Faculdade de Aracruz, Espírito Santo, halasz@fsjb.edu.br

INTRODUÇÃO

O município de Colatina, localizado na região noroeste do estado do Espírito Santo, na bacia do Rio Doce, apresenta forte influência do setor têxtil na composição de sua base industrial.

O Espírito Santo representa 2% da produção nacional. São duas mil empresas gerando cerca de 30 mil empregos diretos e, somando-se os indiretos esse número ultrapassa 100 mil empregos (ABIT 2010).

Em contrapartida há o risco eminente da contaminação dos corpos hídricos.

PROCESSOS OXIDATIVOS AVANÇADOS

REAÇÃO DE FENTON						
PROCESSO UTILIZADO	RESULTADOS OBTIDOS					
Reação de Fenton	Remoção de 100% da cor, 68,65 de COT e 92,25 da DQO.					
Reação de Fenton	Remoção de 69% e 85% de COT e DQO respectivamente.					
Reação de Fenton associada com Coagulação	Remoção de 90% da cor em 5 minutos de reação. Redução moderada da DQO.					
Reação de Fenton associada com Coagulação	Remoção de 96% da cor em 30 minutos de reação.					
	PROCESSO UTILIZADO Reação de Fenton Reação de Fenton associada com Coagulação Reação de Fenton associada com coagulação					

PROCESSOS OXIDATIVOS AVANÇADOS

OZONIZAÇÃO						
AUTORES	PROCESSO UTILIZADO	RESULTADOS OBTIDOS				
Tehrani-Bagha et al., (2010)	Ozonização	Remoção muito eficiente da cor, em contrapartida d remoções parciais de DQO e COT.				
Turhan et al., (2008)	Ozonização através do borbulhamento em colunas de bolhas	Remoção de 100% da cor após 26 minutos de reação.				
Soares et al., (2006)	Ozonização	Remoção de cor variando entre 76 e 100%, com remoção consideravelmente menor de COT.				
Ciardelli e Ranieri (2001)	Ozonização	Remoção de 99 e 60% de Cor e DQO respectivamente.				

METODOLOGIA

COLETA DA AMOSTRA:

As amostras foram coletadas de acordo com a NBR 9898.

A fonte do efluente foi a lavação SUPER STONE SALSA RI-19.

20 Kg de jeans
200 litros de desengomante GB número 7
20 gramas de Faip Extra AM 500 0,10%
240 gramas de Texgal AMG 0,6 g/l
120 gramas de ácido acético 0,6%
40 gramas de enzima ácida 0,2%
500 litros de água

METODOLOGIA

TRATAMENTOS OXIDATIVOS AVANÇADOS:

OZONIZAÇÃO.

Segundo Soares et al., (2006) a faixa ótima de pH para ozonização é entre 5 e 9.

A vazão de ozônio do reator foi de 200 mg/s.

METODOLOGIA

TRATAMENTOS OXIDATIVOS AVANÇADOS:

REAÇÃO DE FENTON.

Segundo Nogueira et al., (2010) a condição ideal para a realização da reação de fenton em efluentes texteis é:

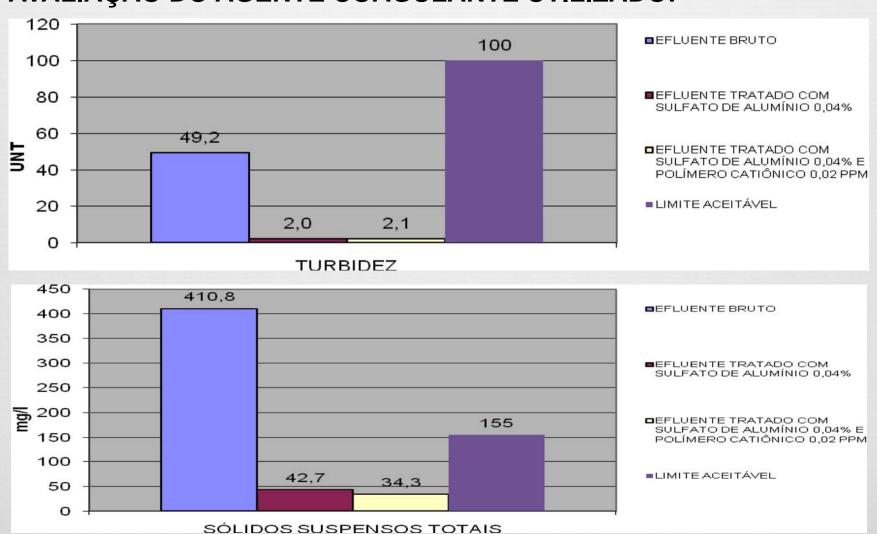
pH 5;

Massa de sulfato ferroso 0,31 g/1;

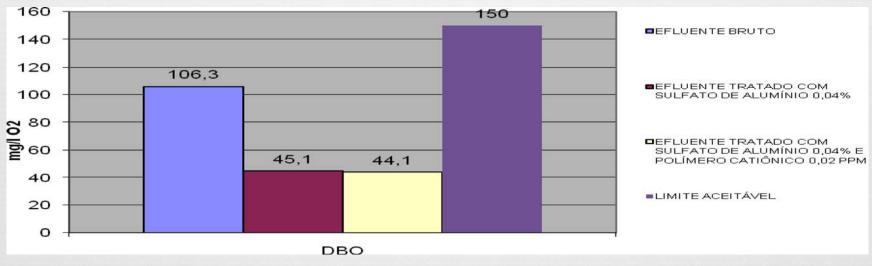
Razão da massa de sulfato ferroso e volume de peróxido de hidrogênio de 1/3.

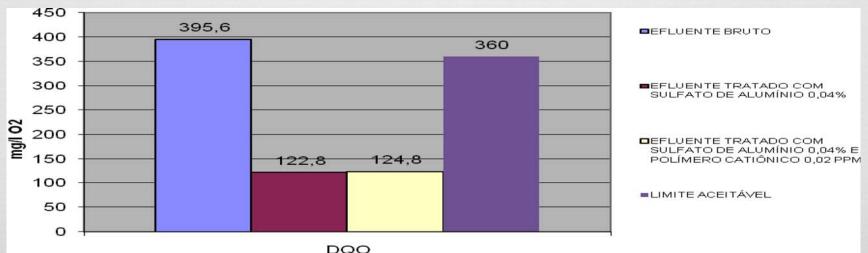
DETERMINAÇÃO DA CONCENTRAÇÃO DO SULFATO DE ALUMÍNIO:

Sulfato de alumínio 20% (ml)	Concentração do Sulfato de alumínio na cuba	Presença de flocos	Característica do sobrenadante	Turbidez (NTU)	Conclusão final
5	0,10%	Positivo	Límpido	20,8	Excesso de coagulante
4	0,08%	Positivo	Límpido	21,2	Excesso de coagulante
3	0,06%	Positivo	Límpido	21,2	Excesso de coagulante
2	0,04%	Positivo	Límpido	21,3	Concentração ótima
1	0,02%	Positivo	Turvo	39,9	Déficit de coagulante
0,5	0,01%	Positivo	Turvo	44,6	Déficit de coagulante

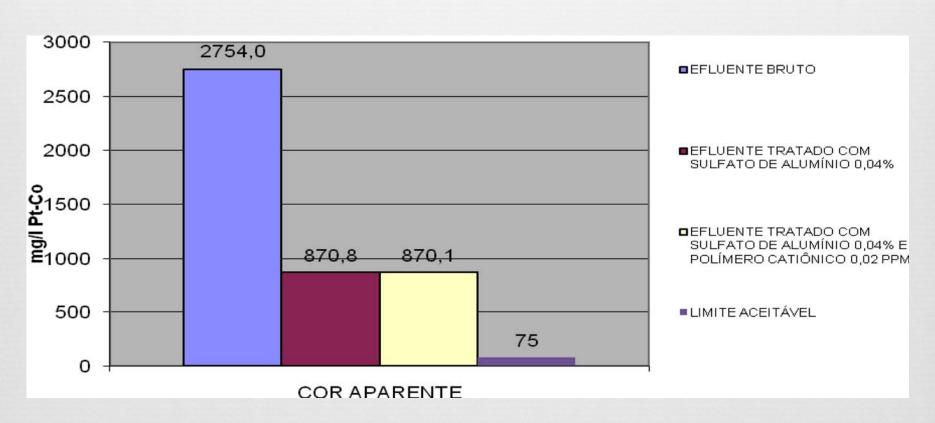

DETERMINAÇÃO DA CONCENTRAÇÃO DO POLÍMERO CATIÔNICO:

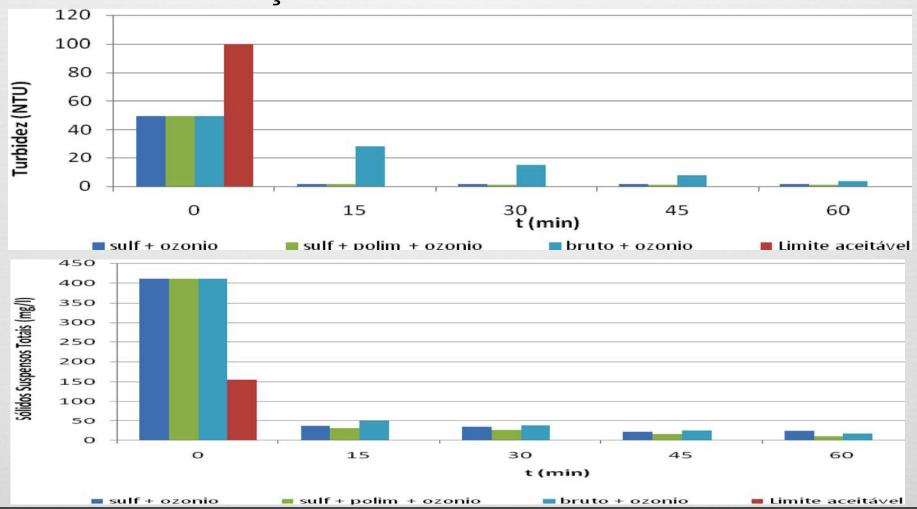
Sulfato de alumínio 20% (ml)	Concentração do Sulfato de alumínio na cuba	Polímero catiônico (ppm)	Presença de flocos	Velocidade de sedimentação	Característica do sobrenadante	Turbidez (NTU)	Conclusão final
2	0,04%	0,06	Positivo	Maior que o padrão	Límpido	12,9	Excesso de polímero
2	0,04%	0,05	Positivo	Maior que o padrão	Límpido	12,9	Excesso de polímero
2	0,04%	0,04	Positivo	Maior que o padrão	Límpido	13	Excesso de polímero
2	0,04%	0,035	Positivo	Maior que o padrão	Límpido	13,1	Excesso de polímero
2	0,04%	0,03	Positivo	Maior que o padrão	Límpido	13,1	Excesso de polímero
2	0,04%	0,025	Positivo	Maior que o padrão	Límpido	13,2	Excesso de polímero
2	0,04%	0,02	Positivo	Maior que o padrão	Límpido	13,2	Concentração ótima
2	0,04%	0,015	Positivo	Semelhante ao padrão	Límpido	20,1	Déficit de polímero
2	0,04%	0,01	Positivo	Semelhante ao padrão	Límpido	20,8	Déficit de polímero
2	0,04%	0,005	Positivo	Semelhante ao padrão	Límpido	21	Déficit de polímero
2	0,04%	0	Positivo	Padrão	Límpido	21,5	

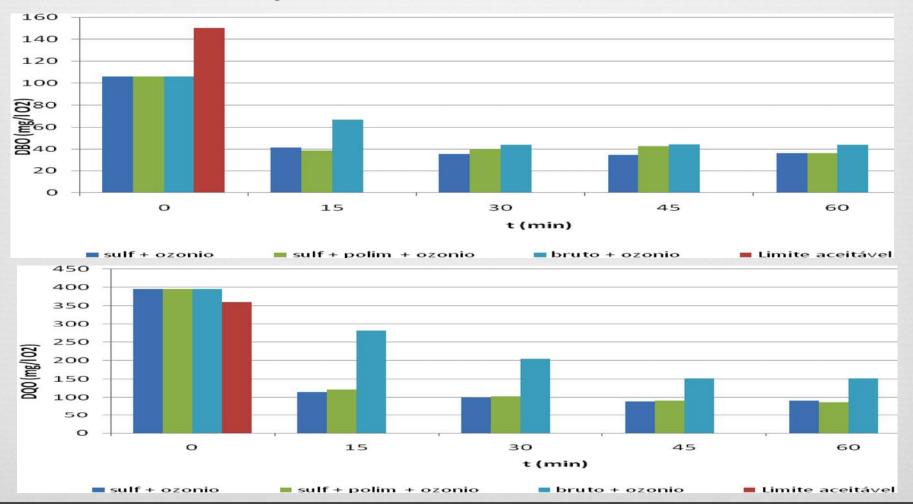

AVALIAÇÃO DO AGENTE COAGULANTE UTILIZADO:

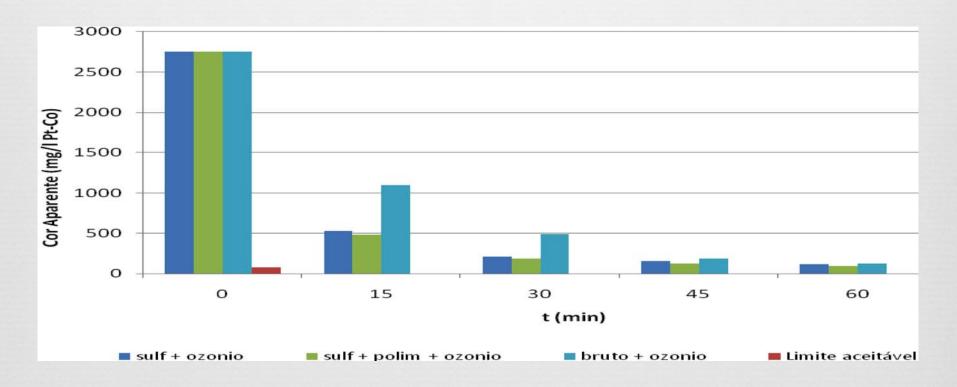


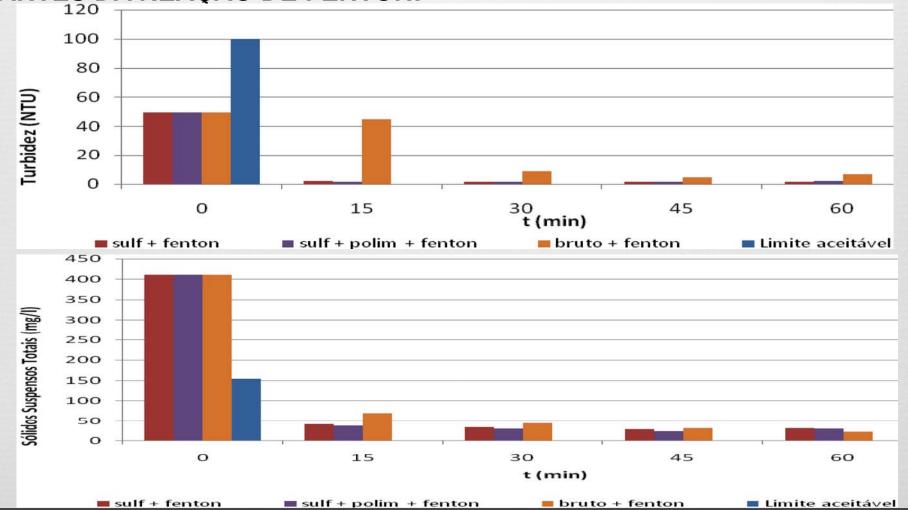
AVALIAÇÃO DO AGENTE COAGULANTE UTILIZADO:

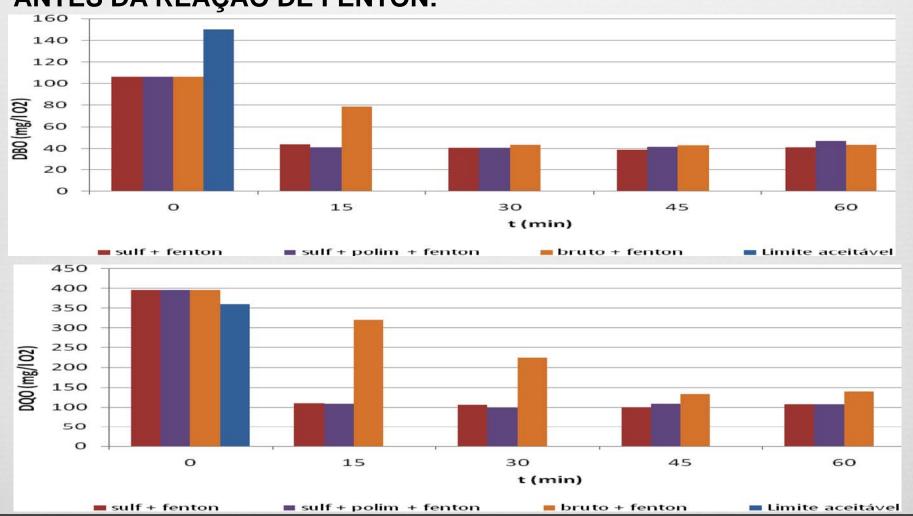


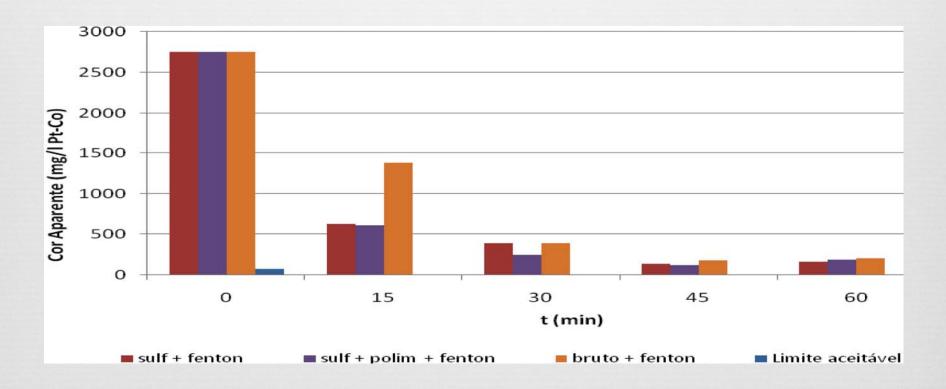

AVALIAÇÃO DO AGENTE COAGULANTE UTILIZADO:


AVALIAÇÃO DA INFLUÊNCIA DO PRÉ-TRATAMENTO FÍSICO-QUÍMICO ANTES DA OZONIZAÇÃO:


AVALIAÇÃO DA INFLUÊNCIA DO PRÉ-TRATAMENTO FÍSICO-QUÍMICO ANTES DA OZONIZAÇÃO:


AVALIAÇÃO DA INFLUÊNCIA DO PRÉ-TRATAMENTO FÍSICO-QUÍMICO ANTES DA OZONIZAÇÃO:


AVALIAÇÃO DA INFLUÊNCIA DO PRÉ-TRATAMENTO FÍSICO-QUÍMICO ANTES DA REAÇÃO DE FENTON:


AVALIAÇÃO DA INFLUÊNCIA DO PRÉ-TRATAMENTO FÍSICO-QUÍMICO ANTES DA REAÇÃO DE FENTON:

AVALIAÇÃO DA INFLUÊNCIA DO PRÉ-TRATAMENTO FÍSICO-QUÍMICO ANTES DA REAÇÃO DE FENTON:

AVALIAÇÃO VISUAL DOS RESULTADOS ALCANÇADOS COM OS PROCESSOS OXIDATIVOS AVANÇADOS:

CONCLUSÕES

Segundo as legislações COPAM n°10 de 1986 e CONSEMA 128/2006, os efluentes têxteis tratados pelo processo físico-químico coagulação e sedimentação, com e sem polímero, apresentaram em suas caracterizações físico-químicas, resultados que permitem seu lançamento em corpos receptores, enquadrados como águas doces de classe 2, que é o caso do rio Doce. Dessa forma ficou comprovado que o tratamento utilizado atualmente pela GB Lavanderia atende aos requisitos legais.

Não foram verificadas variações significativas, nas caracterizações físico-químicas dos efluentes tratados pelo processo físico-químico coagulação e sedimentação, com ou sem polímero. Assim, nas condições do estudo, a utilização do polímero catiônico no tratamento desse efluente, não justificou seu custo operacional.

O pré-tratamento do efluente têxtil com coagulação e sedimentação mostrou ser uma ferramenta útil, pois sem sua realização, os processos oxidativos avançados requereram tempos de reação mais prolongados, em cerca de 50%, para que os percentuais de redução máximas fossem alcançados.

CONCLUSÕES

Os tratamentos por processos oxidativos avançados favoreceram maiores reduções de cor aparente, turbidez e sólidos, enquanto que as reduções da DQO e da DBO foram mais discretas, corroborando com a revisão bibliográfica apresentada.

A utilização dos processos oxidativos avançados no tratamento de efluentes têxteis justificou-se pelo potencial de remoção dos parâmetros estudados em função do tempo, proporcionando vantagens econômicas e ambientais para a indústria.

Não foram verificadas variações significativas entre os resultados alcançados com a ozonização ou fenton. Contanto, os melhores resultados de remoção foram alcançados após o tratamento por coagulação e sedimentação seguido de ozonização, caracterizando-se como a melhor alternativa de tratamento para o efluente têxtil apresentado neste trabalho.