

''CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD''

Reduction in Generation of Scrap Metal by Internal Reuse and External Recycling at Serralheria Montanheza

Redução da geração de sucatas metálicas por meio da reutilização interna e reciclagem externa na Montanheza Serralheira.

- Professor Aluízio Durço Bernardino, Msc.
- Professor Edward N. Aqua, Ph.D.
- Professor Lênia R. S. Vieira, Ph.D.

São Paulo - Brasil, may/20/2011

Estudo de Caso Produção mais Limpa Montanheza Serralheria Ltda

Data de instalação: 1950

Nº de funcionários: 08

Principais Produtos: Produtos de serralheria sob encomenda.

Mercado: Local (RMBH)

Localização: Belo Horizonte/MG

Micro empresa do setor metalúrgico.

Conhecendo o Processo: Diagnóstico

Principais Produtos

Portões em aço carbono pintado ou oxidado (envernizado)

Escadas

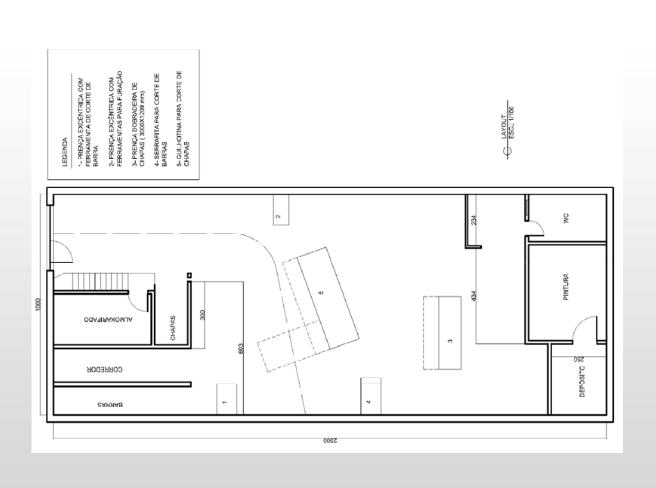
Coberturas em telhas e policarbonato

Conhecendo o Processo: Diagnóstico Principais Resíduos Gerados na Empresa

Rolos e pincéis

Borra de Tinta

Sucatas de aço carbono



Sucata de aço inox

Limalha de aço inox

Lay-out da Montanheza Serralheria

Fluxograma do Processo

Área de produção

Análise quantitativa de entradas e saídas do processo ANTES da implantação do estudo de caso de P+L

ENTRADAS		PROCESSO PRODUTIVO	SAÍDAS			
Matérias-primas, insumos e auxiliares kg	Água m³	Energia kWh	Etapas	Efluentes Líquidos m ³	Resíduos Sólidos kg	Emissões Atmosféricas m³
Aço Carbono 13.483,2	_ Não aplicável	1817,0	5.1	Não aplicável	900,0	Não aplicável
			Corte			
		435,7	5.2			
			Dobra			
Aço Inox 822,7		730,6	5.3			
			Estamagem			
		151,0	5.4			
			Calandragem			
14.305,9	0,0	3.134,3		0,0	900,0	0,0

Estudo de Caso (EC2): Coleta Seletiva de Sucatas Metálicas: Redução na fonte, Reutilização e Reciclagem Externa

Antes da P+L

- Os metais mais presentes nos resíduos sólidos industriais da Serralheria Montanheza são as sucatas de o aço carbono e o aço Inox, que são geradas principalmente na etapa de Corte (5.1) do Fluxograma do Processo de Produção.
 - Na empresa há uma diversidade de tipos de sucatas metálicas, mas inexiste ao longo do processo de produção uma segregação eficiente dos resíduos sólidos industriais metálicos com o objetivo de Reciclagem Externa.

Estudo de Caso

Situação Inicial -

Entrada

Chapas (diversas)
Energia
Pontas Aproveitáveis
Barras (diversas)
Lâmina de Serra (fita)
Disco de corte
Óleo solúvel

Operações – Etapas

5.1. Corte de peças

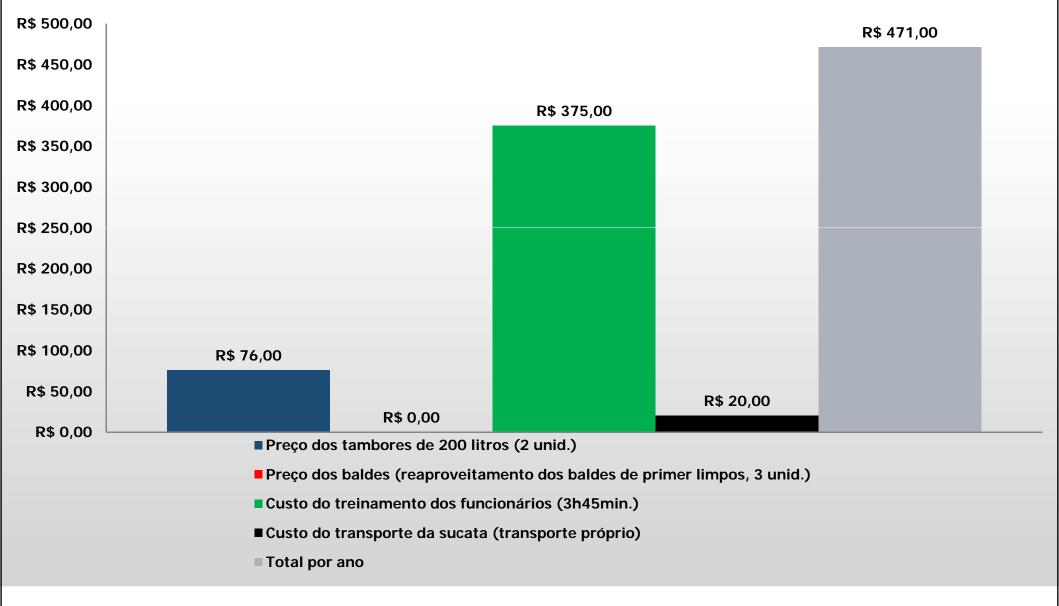
Produto Peça cortada

Saídas

Limalha/ cavacos
Calor
Pontas
reaproveitáveis
Ruído
Sucatas não
aproveitáveis
Lâmina de serra
usada / danificada
Disco de corte
usado/ danificado
Óleo solúvel usado

Análise quantitativa de entradas e saídas do processo DEPOIS da implantação do estudo de caso de P+L

ENTRADAS		PROCESSO PRODUTIVO	SAÍDAS			
Matérias-primas, insumos e auxiliares kg	Água m³	Energia kWh*	Etapas	Efluentes Líquidos m ³	Resíduos Sólidos kg	Emissões Atmosféricas m³
	Não aplicável	1.771,6	5.1	Não aplicável	Sucata de aço carbono	Não aplicável
Aço Carbono 13.483,2			Corte		828,1 ¹	
		424,8	5.2		Sucata de aço inoxidável 49,4 ²	
			Dobra			
Aço Inox 822,7		712,3	5.3		Sucata de lâmina de serra fita **	
			Estamagem			
		147,2	5.4			
			Calandragem			
14.305,9	0,0	3.055,9		0,0	877,5	0,0

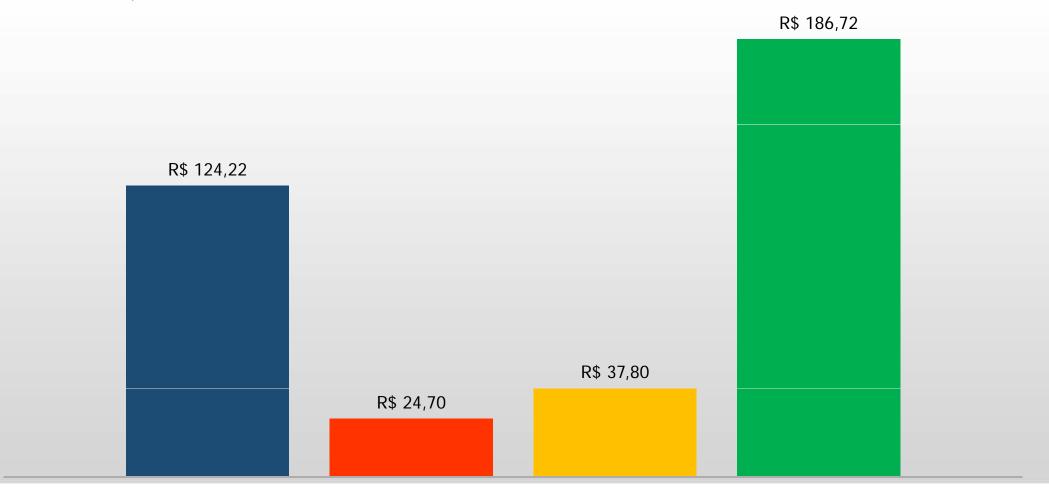

¹ Valor estimado proporcionalmente em relação à quantidade de aço carbono utilizado em torno de 94%, no total da sucata metálica.

² Valor estimado proporcionalmente em relação à quantidade de aço inoxidável utilizado em torno de 6%, no total da sucata metálica.

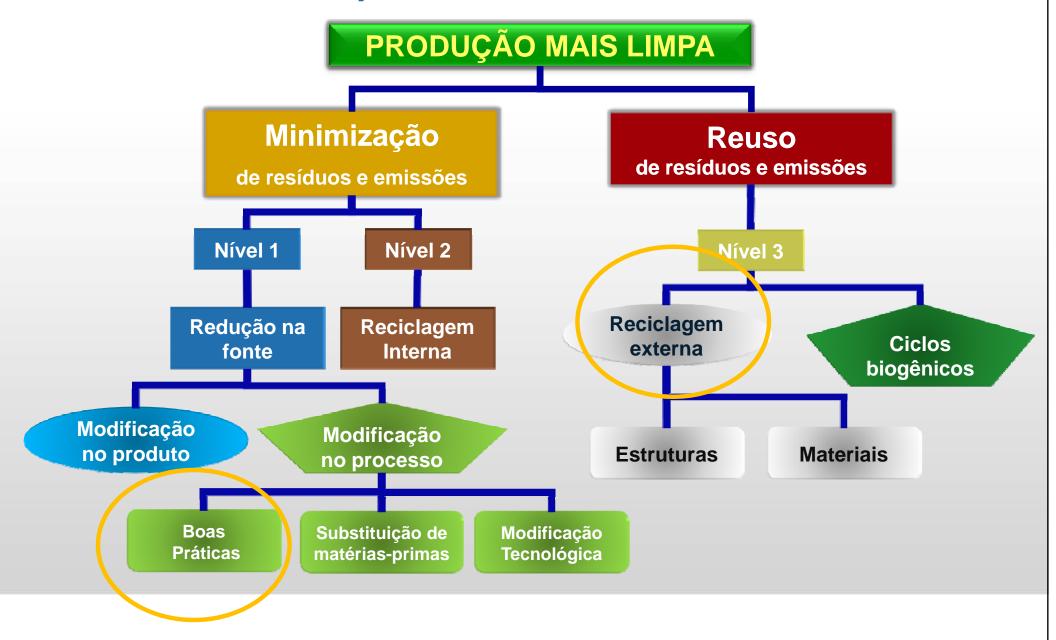
^{*} Valores estimados com base em dados científicos obtidos por meio de pesquisa com profissionais da área fundição. (VIEIRA, Lênia R. Souza, 2004, ed. Santa Clara), sendo aplicada em primeiro momento à segregação correta de sucata metálica e numa segunda etapa aplicada à minimização na fonte, ou seja, redução do consumo de matéria prima, consequentemente menor geração de sucata metálica.

^{**} Valores a serem levantados no final da segregação (1 ano) de resíduos inertes.

Custo das modificações Estudo de Caso



Benefício Econômico - Est. Caso


- Venda de sucata de aço carbono bolsa de resíduos ¹
- Venda de sucata de aço inoxidável na bolsa de resíduos ¹

■ Redução Energia elétrica ²

- Total por ano
- ¹ Valor médio de venda no comércio da Região Metropolitana de Belo Horizonte, para aço inoxidável série 400, R\$500,00/ton e série 300, R\$2500,00/ton; aço carbono R\$150,00/ton.
- ² Redução apenas com a Educação Ambiental

Identificação de oportunidades de PmaisL

Benefícios ambientais e redução

Beneficios ambientais	Redução	Unidade
REDUÇÃO DO DE CONSUMO DE MATÉRIA PRIMA	90,9	kg/ano
MINIMIZAÇÃO DE RESÍDUOS SÓLIDOS	22,5	kg/ano
MINIMIZAÇÃO DE RESÍDUOS PERIGOSOS	8,1	kg/ano
REDUÇÃO DO CONSUMO DE ENERGIA	1073,9	kWh/ano

Oportunidades de PmaisL

Etapa do processo ou área da empresa	Nome da oportunidade	Tipo de ação de minimização	Barreiras e/ou necessidades
Todos os processos	Melhoria na iluminação do galpão	sistema de iluminação com	ac nacaccinanae na amnraca in nila alva n
Todos os processos	Coleta seletiva dos perigosos gerados no produtivo.	Treinamento dos profissionais de pintura; Instalação dos recipientes para disposição adequado dos diversos resíduos perigosos.	A necessidade de determinar um horário específico para que ocorra o treinamento dos profissionais de pintura é um dificultador, pois os não ficam 100% do tempo dentro da empresa, realizam obras de montagem dos produtos nos clientes. Adequação da disposição final adequada dos resíduos sólidos perigosos dos . Minimização da dos perigosos ambiental.
Todos os processos	Troca dos motores elétricos	Modificação tecnológica	Custo elevado dos motores de alto rendimento e tempo de retorno longo.

OBRIGADO!

Aluízio Durço Bernardno durcoaluizio@yahoo.com.br

aluizio.bernardino@prof.una.br