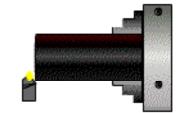


Avaliação Ambiental da Produção de Ésteres de Óleo de Girassol Epoxidado Visando o Emprego na Área de Usinagem

Environmental Assessment of the Production of Sunflower Oil Epoxidized Esters seeking Employment in the Machining

UNISC – Universidade de Santa Cruz do Sul Mestrado em Tecnologia Ambiental


Klafke, A.L.; Bock, F.; Schneider, M.; Schneider, R.C.S.; Moraes, J.A.R.

Introdução

Usinagem: processo de fabricação, por geração de superfície, através da remoção de material, conferindo à peça dimensão, forma ou acabamento, ou ainda uma combinação qualquer desses três.

→15% do valor de todos os produtos manufaturados são por processos de usinagem (TRENT & WRIGHT, 2000)

ATRITO → forças de grandes intensidades Energia associada a deformação do cavaco:

→ ENERGIA TÉRMICA → CALOR

Fluido de Corte

aplicado na ferramenta e no material (peça + cavaco),

para facilitar a operação de usinagem

Funções → Iubrificação, refrigeração, → anti-corrosivo, remoção cavaco

AUMENTO DE

Óleos Vegetais

Óleos Vegetais como Fluidos de Corte

- ✓ excelente lubricidade,
- ✓ biodegradabilidade,
- ✓ baixa volatilidade e
- ✓ boas características de viscosidade-temperatura Ehran et al. (2006)

→submetidos a modificações químicas em sua estrutura, passam a ser uma alternativa mais atrativa para o seu uso

Hwang & Erhan (2006); Campanella et al. (2010)

Porém... em presença de O₂: suscetibilidade de ocorrer hidrólise e oxidação do óleo (ERHAN et al., 2006)

✓EAL – environmentally adapted lubricants = lubrificantes adaptados ao meio ambiente → este conceito é sinônimo da utilização de óleos vegetais em formulações de lubrificantes

Clarens et al. (2008)

Modificações Químicas

Ésteres Metílicos são composto de mono-alquil-ésteres de ácidos graxos de cadeia longa (GHALY et al., 2010)

✓ principal aplicação → combustíveis = BIODIESEL

Epoxidação é uma reação química de transferência de oxigênio para uma ligação dupla de carbono, formando um anel **oxirano**

$$C \neq C + H - O \neq O - H \xrightarrow{\text{enzimas}} C - C - C + H - O - H$$
Peróxido de Hidrogênio

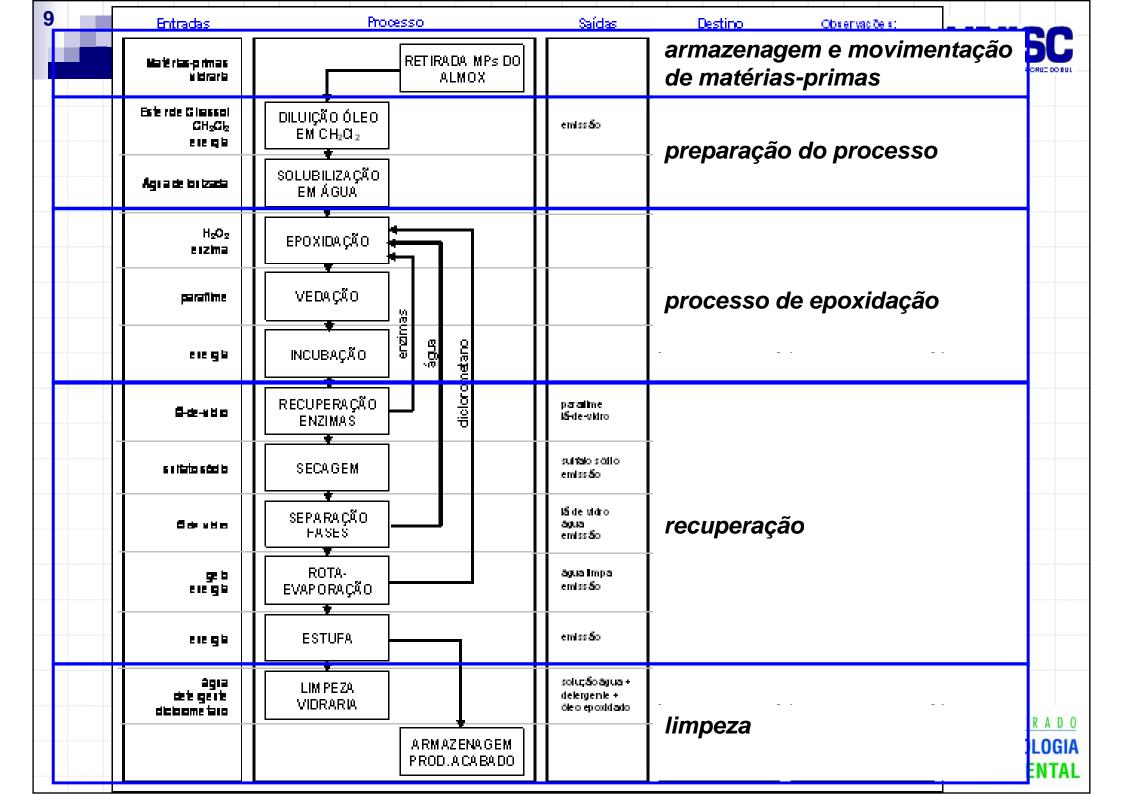
Objetivo → maior estabilidade da molécula processo + limpo: enzimático

- ✓ quaisquer alterações nas características físicas, químicas ou biológicas do ambiente, causadas por qualquer forma de matéria ou energia derivada das atividades humanas
- ✓afetam, direta ou indiretamente, a saúde, segurança e o bem-estar da população, as atividades econômicas e sociais; a biota; as condições estéticas e sanitárias; e a qualidade dos recursos ambientais (CONAMA, 1986)

Avaliação dos Impactos Ambientais:

- ✓ Leopold et al. (1971) → matriz de interação bidimensional, ações X impactos potenciais ambiente
- ✓uso em estudos de impactos ambientais, procurando associar os impactos de uma ação com as características ambientais de sua área de influência (Mota & Aquino, 2000)
- ✓ planilhas para avaliação de impacto → metodologia de controle e remediação (Barbieri, 2007)

CARACTERÍSTICAS AMBIENTAIS RELEVANTES														
			CAF	RACTERI	STICAS	AMBIENT	AIS REL	EVANTE	S					
	Meio Físico			Meio Biótico	Meio Antrópico									
		4	¥r	Recurso Hidrico	Recurso Edáfico	Flora/ Fauna	ocal	2	_	/ida		nto		inal
		Particulas Solidas	Gases e Vapores	Contaminação	contaminação do solo	Diminuição da Diversidade	Econômico Local	Infra-Estrutura	Tecnologia	Qualidade de Vida	Saúde	Desenvolvimento Regional	Paisagismo	Qualid. Prod. Final
Etapas	Atividades Impactantes	<u> </u>		S	CO	i i	Ec			ŏ		Ď		ŏ
	<u> </u>						1							


Para qualificar os impactos, adotam-se os critérios apresentados por Silva (1996) e estão caracterizados a seguir.

- Valor:
- a) Positivo: ação melhora qualidade de um parâmetro;
- b) Negativo: ação causa dano à qualidade de um parâmetro.
- Ordem:
- a) Impacto direto: relação de causa e efeito;
- b) *Impacto indireto*: reação secundária em relação à ação.
- Características Espaciais:
- a) Local: próprio sítio e suas imediações;
- b) Regional: efeito se propaga além das imediações;
- c) *Estratégico*: o componente é afetado coletivo, nacional ou internacional.

Para qualificar os impactos, adotam-se os critérios apresentados por Silva (1996) e estão caracterizados a seguir.

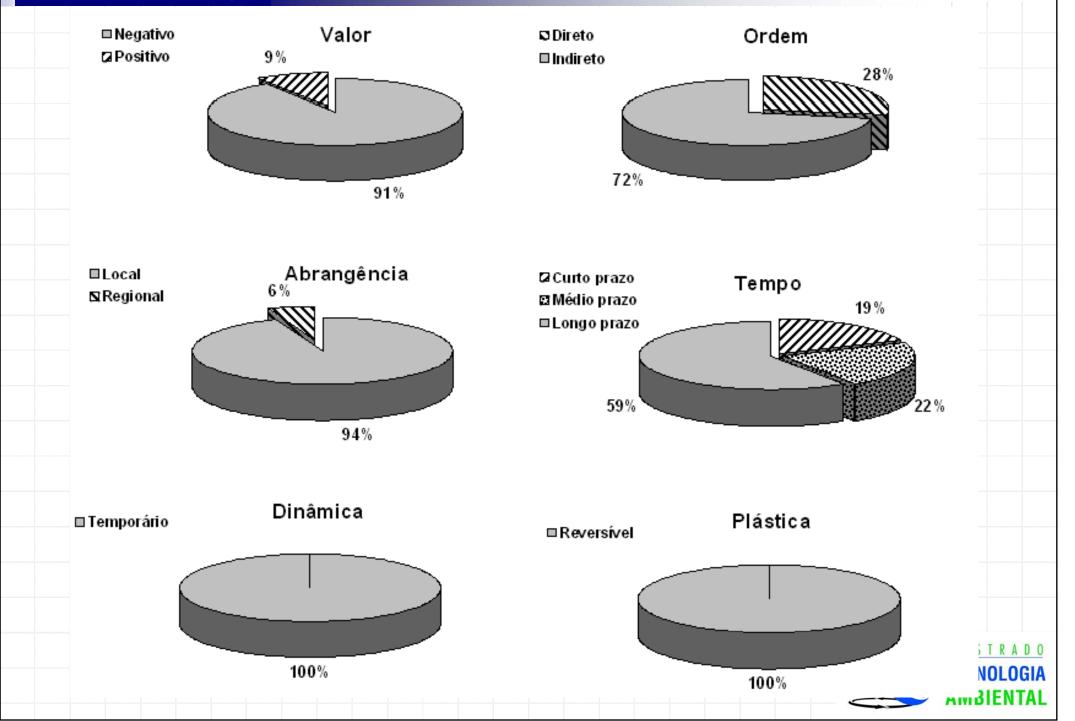
- Características Temporais:
- a) Curto prazo b) Médio prazo c) Longo prazo conforme a manifestação do efeito
- Características Dinâmicas:
- a) Temporário: efeito permanece por um tempo determinado;
- b) Cíclico: efeito se faz sentir em determinados períodos;
- c) Permanente: efeitos não cessam num horizonte temporal
- Características Plásticas:
- a) Reversível: após ação, o fato retorna às condições originais;
- b) *Irreversível*: cessada a ação, o fator ambiental não retorna às suas condições originais

Processo de Epoxidação

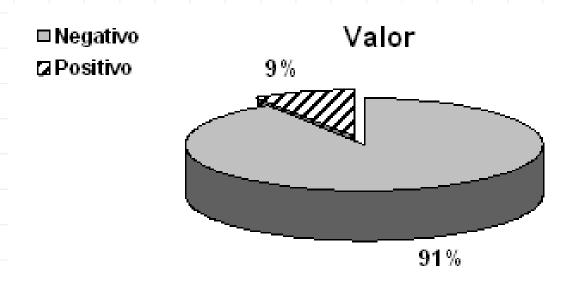
			CAI	MOTER	STICAS	AMBIENT	AIS KEL	EVANIE	<u> </u>					
LEGENDA: P=positivo; N=negativo;			Meio	Físico		Meio	Meio Antrópico							
						Biótico								
) = direto; l = indire	to;		Ar		Recurso	Flora/	_			<u>-e</u>				ਫ਼
	nal; E = estratégico;			Hidrico	Edafico	Fauna	000	프	-	N.		Ě	۰	:≞
= curto prazo; M:	= médio prazo;			93	.e	e e	0 L	<u> </u>	Tecnologia	ge g	ø.	Desenvolvimento Regional	뜐	Ę.
) = longo prazo;		llas as	φ g) še	ခိုင် ရ	ão	<u> </u>	Infra-Estrutura	ĕ	e e	Saúde	N OF	Paisagismo	<u>۾</u>
=temporário; Y=	aídico; A = permanente; rreversível.	Particulas Solidas	Gases e Vapores	Contaminação	.≣ %	uiç Bid	υôπ		8	ig .	လိ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ajs	9
/=reversivel;S=i	meversível.	. S at	e S Val	멸	활용	Ver ji	Econômico Local		-	Qualidade de Vida		8 –	ے	Qualid. Prod. Final
tapas	Atividades Impactantes			S	contaninação do solo	Diminuição da Diversidade	Ū.			ŏ		٩		ō
Armazenagem e ovimentação das														
Matérias-primas														
Preparação do														
Processo														
Processo:														
Epoxidação														
D														<u> </u>
Recuperação														
Limpeza e														
Armazenagem														

Processo de Epoxidação

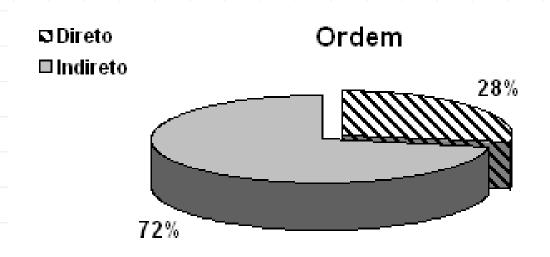
			CAI	KACIEKI	SIICAS	AMBIENT	AIS KEL	EVANTE.	3						
LEGENDA:			Meio	Físico		Meio	Meio Antronico								
P = positivo; N = negativo;						Biótico									
D = direto; l = indi L = local: R = regi	reto; onal; E = estratégico;	,	4 √	Recurso Hidrico	Recurso Edáfico	Flora/ Fauna	-	_		Vida		ا د		쿌	
C= curtoprazo; N			I	_			Γο		ejū	e Vi		<u>=</u>	£	<u> </u>	
O=longo prazo;		e s	စ တ္ဆ	açã	<u>ه</u> روّهِ م	jo d ade	ji co	stu	ê	l e	Saúde	ion	ig is	2	
	= aídico; A = permanente;	Particulas Solidas	Gases e Vapores	Contaminação	<u> </u>	Diminuição da Diversidade	Econômico Local	Infra-Estrutura	Tecnologia	jepi	Sa	senvolvimento Regional	Paisagismo	<u> </u>	
V=reversivel;S=		F S	e S Vap	l ta	contaminação do solo	min ive				Qualidade de		š	•	Qualid. Prod. Final	
Etapas	Atividades Impactantes			ర	3	ة ا			<u> </u>					•	
	Arm az. Movim . Óleo Girassol			NILOTV]	NILOTV		PILMTV			
	Amraz…Movim.DCM	(NDLCTV	ILSTV	NI	NIDI		.CTV		NILOTV	NDLCTV	PILMIV			
·	Ammaz…Movim . Peróxido H ₂			NILOTV		レレ		V		NILOTV		PILMTV			
	Arm az.Movim.Enzimas	NDLMTV			'_	l Milony I	pipkmy I	ı ı	<u> </u>						
	P reparação Óleo Girassol		NDLCTV		P = p	P = positivo; N = negativo; D = direto; I = indireto;									
	Solubilização				D = 4										
Processo	Adição Peróxido Hidrogênio				D = direto, i = iridireto,									NDLCTV	
	Adição Enzimas	NDLMTV			L = lo	L = local; R = regional; E = estratégico;									
Processo:	Lacração do Sistema				_				4.0					NDLCTV	
Epoxidação	Incubação (incub. Shalker)		NDLCTV		C = c	C = curto prazo; M = médio prazo; -									
	recuperação enzimas	PDLMTV			0 = lo	ngo p	razo:								
	secagem		NDLCTV	NILOTV		5- [,	,							
Recuperação	separação fases			NILOTV	T = te	mpor	ário: `	Y = cío	clico:	A = p	ermar	nente;			
	roto-evaporação		NDLCTV	NILOTV		-						,			
	aquecimento em estufa		NDLCTV	NILOTV	V = re	eversí	vel; S	= irre	versi	vel.					
Limpeza e	lim peza vidraria			NILCTV	NILOTV	NIROTV				NILMTV	NDLOTV				
Arm azenagem	·										HULUTV				
	ammazen agem prod.acab.			NILOTV	NILOTV	NILOTV				NILMTV		 			



Planilha de Leopold

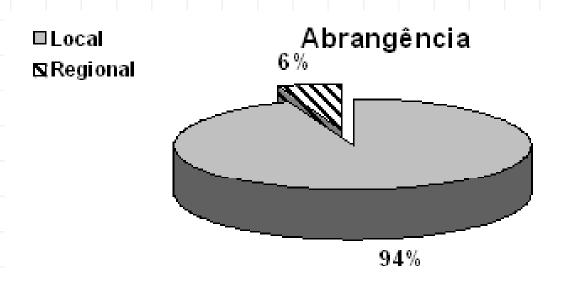


		CARACI	reristic	AS AIVID	IEN IAIS	KELEVA	NIES					
LEGENDA: P = positivo; N = negativo; D = direto; I = indireto;			Meio	Físico		Meio Biótico	Meio Antronico					
				D	B	Flora/	 					
•	onal; E = estratégico;	P	4	Recurso Hidrico	Recurso Edáfico	Fauna	<u> </u>	<u> </u>		to	Final	
C= curto prazo; M	- ·					æ	ڏ ا	<u>e</u>		esenvolvimento Regional	Ē.	
0 = longo prazo;		as s	စတ္သ	açã.	açã 0		<u> </u>	l e	Saúde	nvolvim Regional	ŭ	
	= aídico; A = permanente;	Particulas Solidas	Gases e Vapores	Ē	mina	uiç.	ļ ģ	<u>je</u>	Sa	anvc Reg	<u> </u>	
/=reversivel;S= 		S at	eg Kap	Contaminação	contaminação do solo	Diminuição d Diversidade	Econômico Local	Qualidade de Vida		l ese	Qualid. Prod.	
tapas	Atividades Impactantes			ర	3	ä o				1	0	
	Arm az./Movim . Óleo Girassol			NILOTV	NLOTV	NILOTV	PIRMTV	NILOTV		PILMTV		
	Armaz./Movim.DCM		NDLCTV	NILOTV	NLOTV	NILOTV	PIRMTV	NILOTV	NDLCTV	PILMTV		
Movimentação das Matérias-primas	Arm az. M ovim . Peróxido H $_{\scriptscriptstyle 2}$			HILOTY	HLOTV	HILOTY	PIRMIV	HILOTV		PLIMIV		
	Armaz Molm Z izbas pos Preparação Óleo Girassol		eis r	relad	cões	Sugle		naci	os_			
Preparação do	Preparação Óleo Girassol		HDLCTV		HLOTY	HILOTY		HILMTV			NDLC1	
	Preparação Óleo Girassol S das quais	fora	am	der	tific	ada	1S 8	31111	48,8	0/0	NDLCT	
Dranena	Adição Peróxido Hidrogênio		*** *** *** *** *** *** *** *** *** *** ***		NLOTV	NILOTV		NILMTV	NDLCTV		NDLCT	
	Adição Enzimas	NDLMTV									NDLC1	
Processo:	Lacração do Sistem a				NLOTV						NDLC1	
Ep oxidação	Incubação (incub. Shalker)		NDLCTV		NLOTV	NILOTV		NILMTV	NDLOTV		NDLCT	
	recuperação enzimas	PDLMTV										
	secagem		NDLCTV	NILOTV	NLOTV	HILOTV		HILMTV	NDLOTV			
	separação fases			NILOTV	NLOTV	HILOTV		HILOTV	NDLOTV			
	roto-evaporação		NDLCTV	NILOTV	NLOTV	HILOTV		HILMTV	NDLOTV			
	aquecimiento em estufa		HDLCTV	HILOTV	NLOTV	HILOTV		HILMTV	NDLOTV			
	lim peza vidraria			NILCTV	NLOTV	NIROTV		NILMTV	NDLOTV			
Armazena gem P.A.	arm azen agem prod.acab.			NILOTV	NLOTV	NILOTV		NILMTV				



Valor:

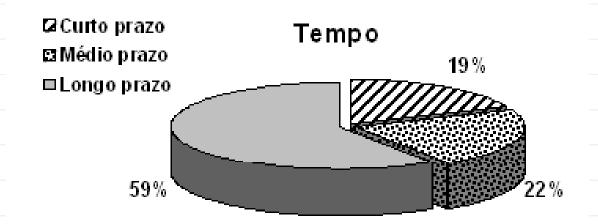
✓91% foram negativos → emprego de solvente, geração de resíduo sólido, consumo de energia para o aquecimento e emissão acidental de vapores orgânicos para a atmosfera ✓9% foram positivos → ganhos econômicos e possibilidades de desenvolvimento para a região



Ordem:

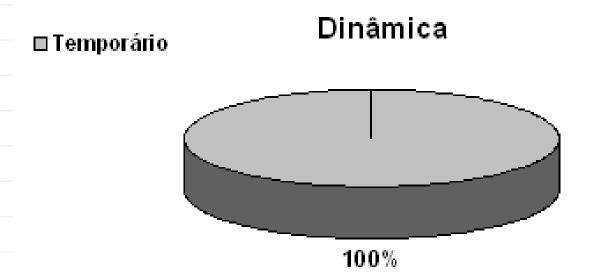
√72% dos impactos indiretos → afetam os recursos hídricos, o solo e a diversidade da fauna e flora, dependendo ainda de outros eventos subseqüentes e o meio antrópico

√28% diretos → o processo afeta o ar, através de contaminação por partículas sólidas, gases e vapores emitidos; a saúde dos trabalhadores envolvidos e a qualidade do produto final, resultado do procedimento



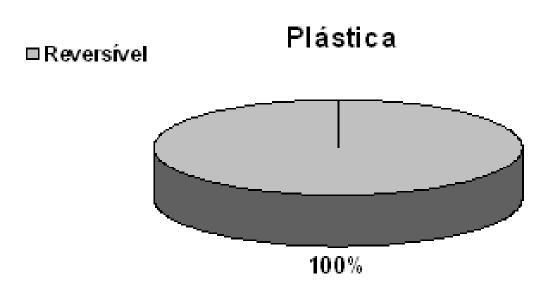
Abrangência:

- √94% dos impactos → atinge apenas o próprio local da realização
- ✓ação regional em 6% dos impactos → possíveis ganhos econômicos



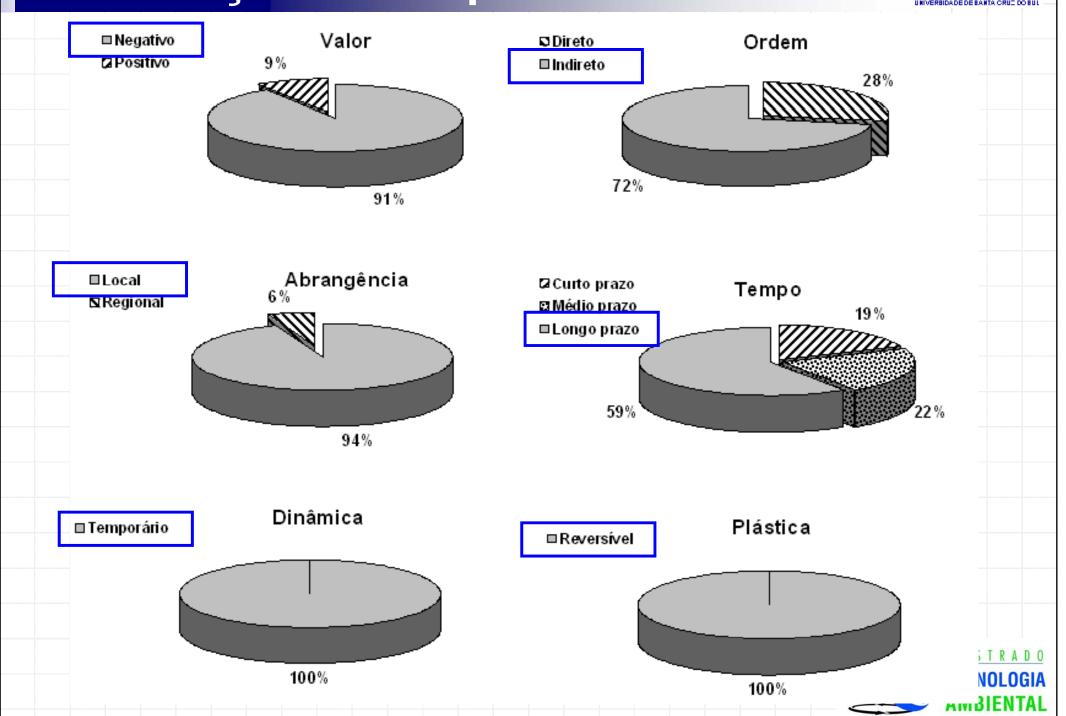
Tempo:

59% teriam manifestação no longo prazo → boa possibilidade de implementação de atitudes remediatórias
22% de médio prazo → posicionadas no meio antrópico
19% de curto prazo → caracterizadas pelas emissões de vapores e gases.



Dinâmica:

100% dos impactos temporários → os efeitos cessam após a finalização do processo



Plástica:

100% reversíveis → cessada a ação, os efeitos desaparecem e a condição original é restabelecida.

Considerações Finais

- ✓ para a redução dos impactos é imprescindível reciclar os solventes e evitar escapes de vapores de diclorometano e, desta forma reduzir as emissões líquidas e gasosas
- ✓ como a finalidade é utilizar o produto de reação em fluidos de corte, os quais apresentam um grande volume de água, é possível eliminar a etapa de secagem ao final do processo (o que seria necessário para outras aplicações deste produto)
- →o processo é mais limpo, já que a biocatálise reduz o consumo de energia e muitas etapas de purificação, além de viabilizar a reutilização dos insumos
- → o produto é mais limpo e promissor para substituir as emulsões utilizadas em fluidos de corte

R e cup er ação	se paração fases		HILOTY	HLOTY HLOTY	✓FAP-UNISC		
18 18 10 10	roto-evaporação	HDLCT		HEOTV HILOTV	✓PIRIT-CNPa		
	aquedmento em estufa	HDLCT	r v hiloty	Agradecimentos:	✓PUICvol – UNISC		
Limp eza e Armazenagem	lim peza vidraria	30 00 00 00 00 00 00 00 00 00 00 00 00 0		HLOTV HROTY	✓SCT-RS		
P.A.	arm azen agem prod.acab.	There and along some more some about some some some some some some some some	BULCTU	HILOTV HILOTV	HILMITY		

Referências

Barbieri, J.C., 2007. Gestão ambiental empresarial: conceitos, modelos e instrumentos, 2a ed., Editora Saraiva, São Paulo.

Belluco, W., De Chiffre, L., 2004. Performance evaluation of vegetable-based oils in drilling austenitic stainless steel. Journal of Materials Processing Technology 148, 171-176.

Campanella, A., Rustoy, E., Baldessari, A., Baltanás, M.A., 2010. Lubricants from chemically modified vegetable oils. Bioresource Technology 101, 245-254.

Cheng, C., Phipps, D., Alkhaddar, R.M., 2005. Treatment of spent metalworking fluids. Water Research 39, 4051-4063.

Clarens, A.F., Zimmerman, J.B., Keoleian, G.A., Hayes, K.F., Skerlos, S.J., 2008. Comparison of life cycle emissions and energy consumption for environmentally adapted metalworking fluid systems. Environmental Science & Technology 42, 8534-8540.

CONAMA – Conselho Nacional do Meio Ambiente, 1986. Resolução nº. 1.

Costa, M.V., Chaves, P.S.V., Oliveira, F.C., 2005. Uso das técnicas de avaliação de impacto ambiental em estudos realizados no Ceará. XXVIII Congresso Brasileiro de Ciências da Comunicação – Universidade Estadual do Rio de Janeiro, Rio de Janeiro.

De Chiffre, L., Belluco, W., 2000. Comparison of methods for cutting fluid performance testing. CIRP (International Academy for Production Engineering) Annals – Manufacturing Technology 49, 57-60.

Ehran, S.Z., Sharma, B.K., Perez, J.M., 2006. Oxidation and low temperature of vegetable oil-based lubricants. Industrial Crops and Products 24, 292-299.

Referências

Ferraresi, D., 1995. Fundamentos da usinagem dos metais, 2ª ed. Editora Blücher, São Paulo.

Hasan, F., Shah, A.A. Hameed, A., 2005. Industrial applications of microbial lipases. Enzyme and Microbial Technology 31, 235-251.

Hwang, H., Erhan, S.Z., 2006. Synthetic lubricant basestock from epoxidized soybean oil and Guerbet alcohols. Industrial Crops and Products 23, 311-317.

Leopold, L.B., Clarke, F.S., Hanshaw, B., 1971. A procedure for evaluating environmental impact. Geological Survey Circular 645, 1-13.

Mota, S., Aquino, M.D., 2002. Proposta de uma matriz para avaliação de impactos ambientais. VI Simpósio Ítalo-Brasileiro de Engenharia Sanitária e Ambiental, Vitória-ES.

Mukherjee, I., Ray, P.K., 2006. A review of optimization techniques in metal cutting process. Computers & Industrial Engineering 50, 15-34.

Munoz, A.A., Sheng, P., 1995. An analytical approach for determining the environmental impact of machining process. Journal of Materials Processing Technology 53, 736-758.

Oliveira, J.F.G., Alves, S.M., 2007. Adequação ambiental dos processos de usinagem utilizando Produção mais Limpa como estratégia de gestão ambiental. Jornal Produção 17, 129-138.

Pettersson, A., 2007. High-performance base fluids for environmentally adapted lubricants. Tribology International 40, 638-645.

Schneider, R.C.S.; Lara, L.R.S.; Bitencourt, T.B.; Nascimento, M.G.; Nunes, M.R.S., 2009. Chemo-enzymatic epoxidation of sunflower oil methyl esters. Journal of Brazilian Chemistry Society 20, 1473-1477.

Referências

Shashidhara, Y.M., Jayaram, S.R., 2010. Vegetable oils as a potential cutting fluid – an evolution. Tribology International 43, 1073-1081.

Shaw, M., 2005. Metal cutting principles, 2nd ed. Oxford University Press, New York.

Silva, E., 1996. Apostila do curso de Engenharia Florestal - Análise e avaliação de impactos ambientais. Universidade Federal de Viçosa, Viçosa-MG.

Sokovic, M., Mijanovic, K., 2001. Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. Journal of Materials Processing Technology 109, 181-189.

Theodori, D., Saft, R.J., Krop, H., Van Broekhuizen, P., 2004. Development of criteria for the award of the European Ecolabel to lubricants. IVAM - Research and Consultancy on Sustainability, Amsterdam.

Trent, E.M., Wright, P.K., 2000. Metal cutting, 4nd ed. Butterworth-Heinemann, Boston.

Vollhardt, K.P.C., Schore, N. E., 2004. Química orgânica estrutura e função, 4a ed. Editora Bookman, Porto Alegre.

UNISC – Universidade de Santa Cruz do Sul Mestrado em Tecnologia Ambiental

Avaliação Ambiental da Produção de Ésteres de Óleo de Girassol Epoxidado Visando o Emprego na Área de Usinagem

Environmental Assessment of the Production of Sunflower Oil Epoxidized Esters seeking Employment in the Machining

Klafke, A.L.; Bock, F.; Schneider, M.; Schneider, R.C.S.; Moraes, J.A.R.

